Spinel NiAl$_2$O$_4$ Based Catalysts: Past, Present and Future

Xinmiao Yu1, Shifa Wang1,* and Huajing Gao1

1School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China

Abstract: Nickel aluminate (NiAl$_2$O$_4$) is a kind of partially antispinel structure oxide. Because of its excellent electronic structure and energy level structure, high thermal stability and high charge transfer and separation efficiency, it has a potential application prospect in catalytic oxidation, photocatalysis, adsorption and other fields. In this paper, the synthesis methods of different NiAl$_2$O$_4$-based catalysts, their applications in catalytic field and related catalytic mechanisms are reviewed from the appearance of single component NiAl$_2$O$_4$, ion-doped NiAl$_2$O$_4$ and multiheterojunction NiAl$_2$O$_4$ catalysts. The application of NiAl$_2$O$_4$ photocatalysts in the field of photocatalysis has gradually shifted from the degradation of dyes to the degradation of drugs, so its photocatalytic mechanism and degradation path need to be further studied. This review points out the direction for the future research of NiAl$_2$O$_4$ based catalysts in the field of catalysis.

Keywords: Nickel aluminate, Catalytic oxidation, Photocatalysis, Catalytic mechanism, Photocatalysts.

1. INTRODUCTION

Catalyst is a kind of substance that can degrade other difficult substances without changing its crystal structure, electronic structure, energy level structure and its own properties [1-5]. Depending on the nature of the catalyst itself, it can be used in adsorption, photocatalysis, piezoelectric catalysis, thermocatalysis, catalytic oxidation, biodegradation and other fields [6-13]. These catalysts may be single-component oxides or multicomponent compounds. Their homogeneous characteristics are relatively stable and do not decompose under acid, base or other conditions [14-20]. They can have both magnetic and photoluminescence properties and other properties, especially excellent magnetic properties can make the photocatalyst with high ability of recycling and reducing secondary pollution of water bodies [21-29].

Spinel aluminate is a kind of common catalyst, because of their special physical and chemical properties such as good thermal stability, low surface acidity, mechanical resistance and water transport, so that they have a wide range of applications in ceramic pigments, magnetic devices, refractories, luminous devices, catalysts and other fields [30-35]. Spinel structure oxides generally have the general structure of AB$_2$O$_4$, where A=Mg, Ca, Sr, Ba, Mn, Fe, Cu, et. B=Al, Fe, Cr, et al. [36-38]. Single-component aluminates are stable and have high charge carrier migration and separation efficiency, so they have potential applications in pigments, catalysis and light-emitting devices [39-45]. However, due to the large band gap value of aluminate, its application in the field of catalysis is limited. Therefore, surface modification, [46-48] ion doping [49] and heterogeneous structure construction [50-57] are used to enhance its physical and chemical properties.

Nickel aluminate (NiAl$_2$O$_4$) is a kind of spinel aluminate with partial antispinel structure, which is a special kind of spinel aluminate [58]. This special structure makes NiAl$_2$O$_4$ lattice easy to produce vacancies, defects and other special structures, but does not affect its high stability, so it has been favored by researchers in the field of catalysis [59-61]. It is worth noting that different synthesis methods tend to affect the physicochemical properties of NiAl$_2$O$_4$. Therefore, it is of great significance to review the application of NiAl$_2$O$_4$ and NiAl$_2$O$_4$ based catalysts in the field of catalysis from the synthesis methods.

In this paper, the synthesis methods of NiAl$_2$O$_4$, ion-doped NiAl$_2$O$_4$ and heterojunction NiAl$_2$O$_4$ based catalysts are reviewed. The effect of synthesis method on the catalytic activity of NiAl$_2$O$_4$ based catalysis is discussed. Based on different types of NiAl$_2$O$_4$ based catalysts, its applications in photocatalytic degradation of dyes, pharmaceuticals, catalytic oxidation of methanol, adsorption, and other fields are reviewed in detail. This review will provide technical reference and theoretical guidance for the future research of NiAl$_2$O$_4$ based catalysts in the field of catalysis.

2. SYNTHESIS OF NICKEL ALUMINATE BASED CATALYST

2.1. Synthesis of Nickel Aluminate Catalyst

When preparing spinel aluminate, different preparation methods will affect the morphology, particle
size and crystal structure of the synthetic material, and also directly affect its optical properties and catalytic properties. At present, the preparation methods of nickel aluminate are mainly sol-gel method, [62] coprecipitation method, [63] combustion method, [64] hydrothermal method, [65] solvothermal method, [66] acoustochemical method, [67] polymer solution method, [68] solid state reaction method, [69] and so on.

Sol-gel method is a commonly used method to prepare spinel aluminate. Compared with other methods, it can synthesize ultrafine particles with uniform particle size distribution at a lower temperature, [70] but the synthesis time is relatively long. Kunde et al. [71] successfully prepared spinel NiAl2O4 film by combining sol-gel method with ultrasonic induced atomization technology, as shown in Figure 1. Maddahfar et al. [72] synthesized NiAl2O4 by modified sol-gel method, and studied the effects of different chelating agents (citric acid monohydrate, oxalic acid, salicylic acid and malic acid) on the morphology, particle size and crystal structure of the synthetic materials. The photocatalytic activity of NiAl2O4 on the photocatalytic degradation of methyl orange (MO) was also studied. The results showed that all the samples were spherical and the best chelating agent was oxalic acid. Zhang et al. [73] prepared NiAl2O4 using citric acid as chelating agent by sol-gel method, and adjusted the size of NiAl2O4 nanoparticles by adjusting the content of Ni. Jeevanandam et al. [62] prepared spinel NiAl2O4 by sol-gel method, and observed that the calcination temperature would affect the formation and grain size of aluminate nanoparticles. Abdulmajeed et al. [74] synthesized spinel NiAl2O4 by sol-gel method, and measured the obtained samples with different measurement methods. The experiment showed that the calcination temperature would affect the grain size, and the particle size would increase with the increasing of temperature.

Combustion method is another common method for preparing spinel aluminate. Compared with other methods, it can quickly and easily synthesize materials with different crystal structures. The performance of synthetic materials using combustion depends on the precursor materials used in the synthesis, the fuel, and the heating conditions. [64, 75-78] The precursor material produces oxygen when it is burned, which makes it easy to produce oxides, so simple oxides and complex oxides can be obtained during the combustion reaction [75, 76]. A novel combustion method has been

Figure 1: Process flow chart of preparation of nickel aluminate film by sol-gel assisted ultrasonic atomization technology. Adapted from ref. [71]. Copyright © 2021 Elsevier Inc.
proposed in previous studies, whereby oxidant and fuel are burned at low temperatures (<500°C) to produce an exothermic reaction through the gas, producing oxides within minutes [77, 78]. Stella et al. [79] synthesized NiAl2O4 using urea and glycine as fuel. The experimental results showed that when urea was used as fuel, there would be large particles in the synthesized powder, while when glycine was used as fuel, the synthesized powder would be fluffy and foamy. This reason may be that the crystal structure of NiAl2O4 is affected by the release of gas during the combustion reaction, which is determined by the oxidant and fuel. Elvia Leal et al. [64] used the combustion reaction method to use glycine as fuel to study the effect of excessive fuel on the structure of the synthesized NiAl2O4 powder. The experimental results showed that the main phase of NiAl2O4 would be produced even with excessive dose, but the larger the dose, the smaller the grain size and the larger the aggregate size. This further shows that fuel can affect the properties and structure of synthetic materials.

In recent years, researchers have developed novel combustion methods based on conventional combustion methods through trial and experiment. Ragupathi et al. [80, 81] synthesized NiAl2O4 from extracts of aloe and sesame as fuel by conventional combustion method (CCM) and microwave combustion method (MCM), and analyzed its shape, particle size, crystal structure, optics and catalytic properties. The experimental results show that the combustion reaction of MCM is much shorter than that of CCM, the heating time is relatively shorter, and the prepared NiAl2O4 maintains a higher purity. Manikandan et al. [82] proved again the characteristics of fast combustion reaction speed and high purity of prepared materials through experiments. Microwave combustion (MCM) provides a novel method for the synthesis of spinel aluminate.

In recent years, the emergence of sol-gel spontaneous combustion provides a new way to synthesize metal oxides. The combination of sol-gel method and combustion method has the characteristics of simple, low cost, rapid heating and short reaction time [83-85]. Thanit Tangcharoen et al. [86] synthesized NiAl2O4 by sol-gel spontaneous combustion method and the morphology, particle size and crystal structure were studied by X-ray diffraction (XRD), X-ray absorption near-side structure (XANES), and extended X-ray absorption fine structure (EXAFS). Tangcharoen et al. [87] proved that diethanolamine (DEA) was used as a new fuel to successfully synthesize spinel aluminate by sol-gel spontaneous combustion method, and analyzed its morphology, particle size and crystal structure. The results showed that the aluminate prepared by this method all obtained single-phase spinel structure and different band gap values. Although there are many methods to prepare nickel aluminate, the polycrylamide gel method has not been used to synthesize nickel aluminate and study its physical and chemical properties.

2.2. Synthesis of Ion-Doped Nickel Aluminate Catalysts

It has been reported that a single ion with bivalent or trivalent properties already possesses conductivity, optics, magnetism and other properties [88]. Metal ions doped aluminate is a simple and effective work to improve the photocatalytic activity of photocatalysts. It can trap electrons and become an effective scavenger, and can prevent electron-hole pair recombination. In recent years, researchers have proposed the method of ion doping nickel aluminate to improve the performance of monomer nickel aluminate on the basis of the good performance of ions. Irshad et al. [89] doped silver ions with good electrical conductivity with nickel aluminate by sol-gel method to improve the electrical properties of monomer nickel aluminate. The experimental results show that the electrical conductivity is obviously improved after silver ion doping. At the same time, Irshad et al. doped silver ions with NiAl2O4 by sol-gel method and combined graphite carbon nitride with NiAl2O4 by ultrasonic-assisted method to synthesize Ag-NiAl2O4@g-C3N4 composite materials, as shown in Figure 2 [59].

In the field of photocatalysis, doping will change the band gap value of semiconductor, and the band gap value may affect the speed of electron-hole pair generation, thus affecting the photocatalytic degradation efficiency of dyes [59]. Elakkiya et al. [90] doped NiAl2O4 with divalent ions (copper, zinc, magnesium) by sol-gel method to degrade methylene blue (MB) and methyl orange (MO), and studied their optical properties. The experimental results show that the degradation efficiency of MB and MO is Mg>Zn> original sample >Cu, and the performance of Mg doping is better. The reason is that the band gap of Mg$_{0.1}$Ni$_{0.9}$Al$_2$O$_4$ is lower than that of Cu$_{0.1}$Ni$_{0.9}$Al$_2$O$_4$, Zn$_{0.1}$Ni$_{0.9}$Al$_2$O$_4$ and NiAl$_2$O$_4$. This may be because when the band gap value is low, it inhibits the production of electron-hole pairs and therefore dyes
mineralization faster. Experimental results show that the degradation efficiency of Ag-NiAl₂O₄ is much higher than that of single component NiAl₂O₄, and the band gap measured by single component NiAl₂O₄ is 3.5 eV, and the band gap measured by doping is 2.66 eV. Confirming the previous idea, lower band gap values can more easily inhibit the generation of electron-hole pairs, thus improving the photocatalytic efficiency.

Akika et al. [91] prepared Ni₁₋ₓCuₓAl₂O₄ (x=0.2, 0.4, 0.6, 0.8, 1) nanomaterials by Cu doping NiAl₂O₄ by the coprecipitate method and used it for photocatalytic degradation of Congo red (CR). The band gap values of Ni₁₋ₓCuₓAl₂O₄ with different doping ratios were measured in the experiment. The results showed that the degradation rate of Ni₁₋ₓCuₓAl₂O₄ was much higher than that of the original sample NiAl₂O₄. Regulska et al. [92] doped Er, Tm, Yb with NiAl₂O₄ and used it for photocatalytic degradation of oxytetracycin (OTC). The band gap values of NiAl₂O₄, Yb-NiAl₂O₄, Tm-NiAl₂O₄ and Er-NiAl₂O₄ measured in the experiment are 3.45, 3.41, 3.27 and 3.12 eV, respectively. The photocatalytic degradation efficiency is Er-NiAl₂O₄>Tm-NiAl₂O₄>Yb-NiAl₂O₄>NiAl₂O₄. Therefore, the above conclusion is further confirmed. Effectively changing the band gap value can improve the efficiency of photocatalysis.

2.3. Synthesis of Nickel Aluminate Based Composite Catalysts

In recent years, researchers have compounded NiAl₂O₄ based on a single component to improve the performance of the monomer. Dhara et al. [93] synthesized thermally stable NiAl₂O₄/Al₂O₃ nanocomposite powder samples by isomolar mechanochemical reaction, and the synthesis process was shown in Figure 3. They also studied the microstructure characterization, optical properties, electrical transport and dielectric properties of NiAl₂O₄/Al₂O₃. Arunkumar et al. [94] synthesized aluminate-activated carbon (MAAC) matrix composites by coprecipitate method. The results show that the photocatalytic efficiency of activated carbon matrix composites is much higher than that of nickel aluminate matrix composites. Kunde et al. [95] synthesized nickel aluminate/multi-walled carbon nanotubes NiAl₂O₄/MWCNT by an environmentally friendly modified evaporation-induced self-assembly process (m-EISA). Muralidharan et al. [96] successfully synthesized NiAl₂O₄ and SiO₂ composites (NiAl₂O₄:SiO₂) by using in situ sol-gel method. Due to the excellent properties of g-C₃N₄, Ahmad et al. [97] synthesized NiAl₂O₄ and g-C₃N₄ binary composite by calcination and ultrasonic-assisted method to improve the performance of photodegradation of 2, 4-
dinitrophenol. Regulska et al. [98] prepared a composite material of NiAl$_2$O$_4$ and graphene quantum dots (GQDS) using coprecipitation method. It is used in photocatalytic degradation of rhodamine B, quinoline yellow, eriochrome black T, and methylene blue.

3. APPLICATION OF NiAl$_2$O$_4$ BASED CATALYSTS IN THE FIELD OF CATALYSIS

NiAl$_2$O$_4$ belongs to partial antispinel and is a mixed cationic oxide with normal spinel structure. Half of the Al$^{3+}$ ions are distributed in the tetrahedral void and the other half is distributed in the octahedral void. Ni occupies the tetrahedral position and has a stable structure and high catalytic activity at high temperature. Although spinel NiAl$_2$O$_4$ has a large specific surface area and small particle size, it can easily separate electrons and holes and inhibit the recombination of electron hole pairs under ultraviolet light, so it can be used as a photocatalyst. Due to the continuous emergence of ion-doped NiAl$_2$O$_4$ photocatalysts and heterojunction NiAl$_2$O$_4$ based photocatalysts, the catalytic activity of single component NiAl$_2$O$_4$ has been greatly improved. These catalysts have been widely used in the degradation of drugs, azo dyes, refractory pollutants, catalytic oxidation of benzyl alcohol and methanol, photocatalytic water hydrogen production, etc.

The application of NiAl$_2$O$_4$ in catalysis began in 1994, when Pena et al. [99] used NiO/NiAl$_2$O$_4$ to study the effect of catalyst pretreatment on the relative rates of the main reaction and coking reaction during acetylene hydrogenation. Subsequently, the research upsurge of NiAl$_2$O$_4$ in catalytic field was set off [100-103]. However, the research of NiAl$_2$O$_4$ in the field of photocatalysis is relatively late. It was only reported in 2014 that NiAl$_2$O$_4$ was used to photocatalyze hydrogen production from water [104, 105]. Since then, NiAl$_2$O$_4$ has gradually been used to degrade dyes [72]. Simultaneously, NiAl$_2$O$_4$ is also used to adsorb heavy metal ions due to its excellent adsorption performance [106]. In recent years, researchers are trying to use new methods to enhance the photocatalytic activity of NiAl$_2$O$_4$ to degrade refractory pollutants and drugs.

3.1. Application of NiAl$_2$O$_4$ Based Catalysts in the Field of Photocatalytic Degradation of Dyes

The application of NiAl$_2$O$_4$ in dye degradation mainly focuses on the study of photocatalysis. Due to its special electronic structure and energy level structure, NiAl$_2$O$_4$ can only respond to UV light, so most of the research work focuses on the catalytic activity of UV light. Because the sunlight contains a certain amount of ultraviolet light, so some researchers have used NiAl$_2$O$_4$ in the field of solar photocatalysis.

![Figure 3: Schematic diagram of the synthesis of NiAl$_2$O$_4$/Al$_2$O$_3$ nanocomposites. Adapted from ref. [93]. Copyright © 1999-2023 John Wiley & Sons, Inc.](image-url)
As the research progresses, researchers are working on how to use the visible light in sunlight, which makes up the majority of sunlight, to develop NiAl₂O₄ based photocatalysts driven by visible light. The following strategies have been adopted to enhance the photocatalytic activity of NiAl₂O₄. In order to solve the problem of large band gap value of NiAl₂O₄, the band gap value of NiAl₂O₄ can be degraded by ion doping, so as to improve its optical response range, so that NiAl₂O₄ can respond to visible light. Noble metal particles are good carriers for electron transport. The modification of noble metal particles on the surface of NiAl₂O₄ will help to enhance its photocatalytic activity. The photocatalytic activity of NiAl₂O₄ can be greatly improved by combining some excellent visible light responsive semiconductor materials with NiAl₂O₄, in addition to introducing interfacial defects to enhance the transfer and separation of electron and hole pairs.

Table 1 shows the comparison of the application of NiAl₂O₄ based photocatalyst for the degradation of dyes [34, 59, 72, 87, 90, 91, 94, 107-112]. It can be seen from Table 1 that NiAl₂O₄ has high photocatalytic activity in the degradation of organic dyes under ultraviolet light. According to the calculation of specific activity, NiAl₂O₄ synthesized by different methods has different photocatalytic activity, and when NiAl₂O₄ degrades different dyes, its photocatalytic activity is also different. This was sufficient to confirm that NiAl₂O₄ was selective in degrading dyes. When NiAl₂O₄ is doped with different ions such as Mg, Zn and Cu, the photocatalytic activity of ZnAl₂O₄ is greatly affected by different metal ions. With the increase of ionic radius, the photocatalytic activity of ZnAl₂O₄ decreases. The use of ion-doped NiAl₂O₄ photocatalysts for degradation of different dyes did not show strong selectivity. The photocatalytic activity of NiAl₂O₄ can be enhanced by ion doping, surface modification of noble metal ions and heterojunction construction.

It is interesting that Irshad et al. [59] synthesized Ag-NiAl₂O₄@g-C₃N₄ composite photocatalysts by sol-gel method with high photocatalytic activity in the degradation of organic dyes. By modifying Ag particles on the surface of NiAl₂O₄ and coupling with g-C₃N₄ to form heterojunction, the NiAl₂O₄ based photocatalyst has high charge transfer and separation efficiency, which enhances the photocatalytic activity of NiAl₂O₄. Figure 4 shows the photocatalytic mechanism of Ag-NiAl₂O₄@g-C₃N₄ photocatalysts. Hydroxyl radicals and superoxide radicals dominate the entire photocatalytic reaction, eventually interacting with dyes to produce CO₂ and H₂O.
Table 1: Comparison of the Application of NiAl₂O₄ Based Photocatalyst for the Degradation of Dyes. MB- Methylene Blue, MO- Methylene Orange, CV-Crystal Violet, RhB- Rhodamine B, BA- Weak Acid Brilliant blue, CR- Congo Red, MG- Malachite Green, MR-methyl red, D-Degradation Percentage, SA-Specific Activity

<table>
<thead>
<tr>
<th>Samples</th>
<th>Dye</th>
<th>Lamp</th>
<th>(C_{\text{catal}}) (g L(^{-1}))</th>
<th>(C_{\text{deg}}) (mmol L(^{-1}))</th>
<th>(t) (h)</th>
<th>(D) (%)</th>
<th>SA (mmol/g/h)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn₀.₁Ni₀.₉Al₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0312</td>
<td>2</td>
<td>93%</td>
<td>0.0097</td>
<td>90</td>
</tr>
<tr>
<td>Mg₀.₁Ni₀.₉Al₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0312</td>
<td>2</td>
<td>97%</td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0312</td>
<td>2</td>
<td>91%</td>
<td>0.0095</td>
<td></td>
</tr>
<tr>
<td>Cu₀.₅Ni₀.₅Al₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0312</td>
<td>3</td>
<td>90%</td>
<td>0.0063</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>Visible lights</td>
<td>0.2</td>
<td>0.0312</td>
<td>1</td>
<td>47%</td>
<td>0.0733</td>
<td>34</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>Visible lights</td>
<td>0.3</td>
<td>(1\times10^{-6})M</td>
<td>2</td>
<td>94%</td>
<td>/</td>
<td>[107]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>0.2</td>
<td>0.0312</td>
<td>1.4</td>
<td>94.2%</td>
<td>0.1049</td>
<td>[87]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0156</td>
<td>2.7</td>
<td>58.16%</td>
<td>0.0168</td>
<td>[59]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0156</td>
<td>2.7</td>
<td>71.13%</td>
<td>0.0205</td>
<td></td>
</tr>
<tr>
<td>Ag-NiAl₂O₄</td>
<td>MB</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0156</td>
<td>2.67</td>
<td>85.26%</td>
<td>0.0249</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>54%</td>
<td>0.0336</td>
<td></td>
</tr>
<tr>
<td>NiAl₁.₉Ga₂O₃O₄</td>
<td>MB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>89%</td>
<td>0.0554</td>
<td>[108]</td>
</tr>
<tr>
<td>NiAl₁.₉Co₂O₃O₄</td>
<td>MB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>94%</td>
<td>0.0586</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>0.4</td>
<td>0.00625</td>
<td>1.67</td>
<td>99%</td>
<td></td>
<td>[109]</td>
</tr>
<tr>
<td>Zn₀.₁Ni₀.₉Al₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0305</td>
<td>3</td>
<td>92%</td>
<td>0.0062</td>
<td></td>
</tr>
<tr>
<td>Mg₀.₁Ni₀.₉Al₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0305</td>
<td>1.5</td>
<td>96%</td>
<td>0.0130</td>
<td>[59]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0305</td>
<td>3</td>
<td>94%</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>Cu₀.₅Ni₀.₅Al₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>1.5</td>
<td>0.0305</td>
<td>3</td>
<td>84%</td>
<td>0.0057</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MO</td>
<td>Tungstate lamps</td>
<td>4.5</td>
<td>0.1527</td>
<td>1.33</td>
<td>82%</td>
<td></td>
<td>[72]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MO</td>
<td>Mercur lamp</td>
<td>0.2</td>
<td>0.0305</td>
<td>1.4</td>
<td>88.4%</td>
<td>0.0962</td>
<td>[87]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MO</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>31%</td>
<td>0.0193</td>
<td>[108]</td>
</tr>
<tr>
<td>NiAl₁.₉Ga₂O₃O₄</td>
<td>MO</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>91%</td>
<td>0.0568</td>
<td></td>
</tr>
<tr>
<td>NiAl₁.₉Co₂O₃O₄</td>
<td>MO</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>94%</td>
<td>0.0587</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>CV</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0484</td>
<td>2.7</td>
<td>57.14%</td>
<td>0.0512</td>
<td>[59]</td>
</tr>
<tr>
<td>Ag-NiAl₂O₄</td>
<td>CV</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0484</td>
<td>2.7</td>
<td>70.52%</td>
<td>0.0632</td>
<td></td>
</tr>
<tr>
<td>Ag-NiAl₂O₄@g-C₃N₄</td>
<td>CV</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0484</td>
<td>2.67</td>
<td>83.87%</td>
<td>0.0760</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>RhB</td>
<td>UV light</td>
<td>0.2</td>
<td>0.0208</td>
<td>1.4</td>
<td>91.7%</td>
<td>0.0681</td>
<td>[87]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>RhB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>73%</td>
<td>0.0456</td>
<td>[108]</td>
</tr>
<tr>
<td>NiAl₁.₉Ga₂O₃O₄</td>
<td>RhB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>87%</td>
<td>0.0543</td>
<td></td>
</tr>
<tr>
<td>NiAl₁.₉Co₂O₃O₄</td>
<td>RhB</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0312</td>
<td>1</td>
<td>90%</td>
<td>0.0562</td>
<td></td>
</tr>
<tr>
<td>Ag-NiAl₂O₄@g-C₃N₄</td>
<td>BA</td>
<td>Sun light</td>
<td>0.2</td>
<td>0.0409</td>
<td>2.67</td>
<td>68.46%</td>
<td>0.0524</td>
<td>[59]</td>
</tr>
<tr>
<td>NiO/NiAl₂O₄</td>
<td>CR</td>
<td>UV light</td>
<td>0.33</td>
<td>0.09616</td>
<td>2/3</td>
<td>88.91%/100%</td>
<td>1.2953/0.9713</td>
<td>[111]</td>
</tr>
<tr>
<td>Ni₁₂Cu₂Al₂O₄</td>
<td>CR</td>
<td>Xenon lamp</td>
<td>1</td>
<td>0.5769</td>
<td>3</td>
<td>90.55%</td>
<td>0.1741</td>
<td>[91]</td>
</tr>
<tr>
<td>Co₉.₈₅Ni₁₅Al₂O₄ AC</td>
<td>MG</td>
<td>Tungsten halogen lamp</td>
<td>0.05</td>
<td>(1\times10^{-4})M</td>
<td>1.5</td>
<td>100%</td>
<td>/</td>
<td>[94]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MG</td>
<td>Visible lights</td>
<td>0.3</td>
<td>(1\times10^{-5})M</td>
<td>2</td>
<td>89%</td>
<td>/</td>
<td>[107]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MG</td>
<td>Visible lights</td>
<td>1</td>
<td>0.0027</td>
<td>2</td>
<td>42%</td>
<td>0.0006</td>
<td>[112]</td>
</tr>
<tr>
<td>Ni₁₋Co₁₆Al₂O₄.₈</td>
<td>MG</td>
<td>Visible lights</td>
<td>1</td>
<td>0.0027</td>
<td>2</td>
<td>20%-39%</td>
<td>0.0003-0.0005</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>MR</td>
<td>UV light</td>
<td>0.2</td>
<td>0.0371</td>
<td>1.4</td>
<td>88.9%</td>
<td>0.1178</td>
<td>[87]</td>
</tr>
</tbody>
</table>

3.2. Application of NiAl₂O₄ Based Catalysts in the Field of Photocatalytic Degradation of Drugs

In recent years, with the further development of the study of photocatalysis in the field of dyes, the
photocatalysis mechanism and the reaction process of dye degradation are familiar, which makes the study of dyes fall into a trough. Even from the structure of the dye, its structure is so simple that different catalysts are used to degrade the same reaction process, which allowed researchers to quickly understand its reaction mechanism. In order to promote the rapid development of research in the field of photocatalysis, researchers have focused on the degradation of drugs. The molecular structure of drugs such as antibiotics is complex, and the study of its degradation process needs to be combined with many professional characterization equipment and rich research experience of researchers. Therefore, synthesis of new photocatalysts to degrade drugs has become a new research direction in the field of photocatalysis.

The same is true for NiAl\(_2\)O\(_4\) photocatalyst research, researchers have gradually shifted the focus of research to photocatalytic degradation of drugs. Table 2 shows the comparison of the application of NiAl\(_2\)O\(_4\) based photocatalyst for the degradation of drugs [34, 92, 113, 114]. Similar to the study on dyes, the researchers also used ion doping and heterostructure to improve the photocatalytic activity of NiAl\(_2\)O\(_4\) photocatalysts for the photocatalytic degradation of drugs. Since it was in its infancy, NiAl\(_2\)O\(_4\) based photocatalysts were only used to degrade tetracycline hydrochloride, 2,4-dichlorophenol and oxytetracycline hydrochloride. By doping NiAl\(_2\)O\(_4\) with rare earth metal ions, it was found that the photocatalytic activity of NiAl\(_2\)O\(_4\) increased with the increase of ionic radius, which was contrary to the trend of dye degradation. The main reason is that with the increase of the radius of rare earth ion, the outermost electron of rare earth ion is easy to be activated by light energy to produce free electrons, which promotes the separation and transfer of charge carriers, and thus enhances the photocatalytic activity of NiAl\(_2\)O\(_4\) based photocatalyst.

Figure 5 shows the proposed mechanism of the rare-earth-metals-doped nickel aluminates [92]. The more electrons in the outermost layer of rare earth ions are, the easier they are to be excited by sunlight, which contributes to the transfer and separation in the photocatalytic process, thus promoting the generation of hydroxyl radicals and superoxide radicals. Meanwhile, because NiAl\(_2\)O\(_4\) is partially antispinel structure, rare earth ion doping will further affect its internal crystal structure, electronic structure and energy level structure, resulting in lattice distortion, produce oxygen vacancy or defect, and enhance the transfer and separation of electron and hole pairs in NiAl\(_2\)O\(_4\) based photocatalysts. However, the research of NiAl\(_2\)O\(_4\)-based photocatalysts for drug degradation is not mature, especially the photocatalytic mechanism, drug degradation path and reaction process need further exploration in order to understand their internal mechanism.

![Figure 5: The proposed mechanism of the rare-earth-metals-doped nickel aluminates. Adapted from ref. [92]. Copyright © 2022 Elsevier B.V.](image-url)

Table 2: Comparison of the Application of NiAl\(_2\)O\(_4\) Based Photocatalyst for the Degradation of Drugs. TC-Tetracycline Hydrochloride, OTC-Oxytetracycline Hydrochloride

<table>
<thead>
<tr>
<th>Samples</th>
<th>Drug</th>
<th>Lamp</th>
<th>(C_{\text{Catalyst}}) (g·L(^{-1}))</th>
<th>(C_{\text{Drug}}) (mmol·L(^{-1}))</th>
<th>t (h)</th>
<th>D (%)</th>
<th>SA (mmol/g·h)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAl(_2)O(_4)/g-C(_3)N(_4)</td>
<td>TC</td>
<td>Sun light</td>
<td>0.3</td>
<td>0.0264</td>
<td>2</td>
<td>90%</td>
<td>0.0396</td>
<td>[113]</td>
</tr>
<tr>
<td>NiAl(_2)O(_4)</td>
<td>TC</td>
<td>UV light</td>
<td>0.5</td>
<td>0.0132</td>
<td>0.5</td>
<td>83%</td>
<td>0.0439</td>
<td>[34]</td>
</tr>
<tr>
<td>NiO-NiAl(_2)O(_4)</td>
<td>2,4-dichlorophenol</td>
<td>UV light</td>
<td>2</td>
<td>0.2454</td>
<td>2</td>
<td>94%</td>
<td>0.0577</td>
<td>[114]</td>
</tr>
<tr>
<td>NiAl(_2)O(_4)</td>
<td>OTC</td>
<td>Sun light</td>
<td>1.5</td>
<td>0.00003</td>
<td>2</td>
<td>27%</td>
<td>0.0000027</td>
<td>[92]</td>
</tr>
<tr>
<td>Yb-NiAl(_2)O(_4)</td>
<td>OTC</td>
<td>Sun light</td>
<td>1.5</td>
<td>0.00003</td>
<td>2</td>
<td>49%</td>
<td>0.0000049</td>
<td></td>
</tr>
<tr>
<td>Tm-NiAl(_2)O(_4)</td>
<td>OTC</td>
<td>Sun light</td>
<td>1.5</td>
<td>0.00003</td>
<td>2</td>
<td>62%</td>
<td>0.0000062</td>
<td></td>
</tr>
<tr>
<td>Er-NiAl(_2)O(_4)</td>
<td>OTC</td>
<td>Sun light</td>
<td>1.5</td>
<td>0.00003</td>
<td>2</td>
<td>73%</td>
<td>0.0000073</td>
<td></td>
</tr>
</tbody>
</table>
3.3. Application of NiAl₂O₄ Based Catalysts in the Field of Catalytic Oxidation of Benzyl Alcohol and Methanol

Experimental research on the catalytic oxidation of NiAl₂O₄ has been going on for a long time, more than a decade before its use in photocatalytic degradation of dyes and drugs. In the early years, arousing the attention of many scientific researchers, NiAl₂O₄ was used in oxidative degradation benzyl alcohol and methanol. Table 3 shows the comparison of the application of NiAl₂O₄ based photocatalyst for the catalytic oxidation of benzyl alcohol [30, 115]. By doping Co ions into the lattice of NiAl₂O₄ and catalyzing the oxidation of benzyl alcohol, researchers found that it has a high catalytic oxidation performance. Similarly, the crystal structure and microstructure of NiAl₂O₄ have great influence on its catalytic oxidation performance.

The catalytic oxidation performance of NiAl₂O₄ can be improved effectively by fabricating special defective structures with the antispinel structure.

Similar to the study of photocatalysis, the catalytic oxidation performance of single component NiAl₂O₄ is relatively low, so special methods should be used to enhance its catalytic oxidation performance. Therefore, MgO/NiAl₂O₄ composite oxides with different mass percentages were synthesized to investigate their catalytic oxidation properties. Table 4 shows the comparison of the application of NiAl₂O₄ based photocatalyst for the catalytic oxidation of methanol [116-118]. The results confirm that NiAl₂O₄-based catalyst methanol has high catalytic oxidation capacity.

Figure 6 shows the redox mechanism of methanol over Pt/NiAl₂O₄ and Pt/γ-Al₂O₃. Li et al. [119] prepared

Table 3: Comparison of the Application of NiAl₂O₄ Based Photocatalyst for the Catalytic Oxidation of Benzyl Alcohol

<table>
<thead>
<tr>
<th>Samples</th>
<th>Organic matter</th>
<th>Ccatalyst (g·L⁻¹)</th>
<th>Oxidant</th>
<th>Temperature/Time</th>
<th>Conversion (%)</th>
<th>Selectivity (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAl₂O₄</td>
<td>Benzyl alcohol</td>
<td>0.5</td>
<td>Benzy1 alcohol (5 mmol) H₂O₂ (5 mmol)</td>
<td>80 °C/8 h</td>
<td>60</td>
<td>100</td>
<td>[80]</td>
</tr>
<tr>
<td>Ni₃Co₃Al₂O₄</td>
<td>Benzyl alcohol</td>
<td>0.5</td>
<td>Benzy1 alcohol (5 mmol) acetonitrile (5 mmol) H₂O₂ (5 mmol)</td>
<td>80 °C/5 h</td>
<td>94</td>
<td>100</td>
<td>[115]</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the Application of NiAl₂O₄ Based Photocatalyst for the Catalytic Oxidation of Methanol

<table>
<thead>
<tr>
<th>Samples</th>
<th>Organic matter</th>
<th>Ccatalyst (g·L⁻¹)</th>
<th>Oxidant</th>
<th>Temperature/Time</th>
<th>XCH₂⁺/%</th>
<th>YH₂</th>
<th>YCO</th>
<th>YCO₂</th>
<th>H₂/CO</th>
<th>CO/CO₂</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5wt.% MgO/ NiAl₂O₄</td>
<td>38,400 cm³ CH₄ g⁻¹ h⁻¹</td>
<td>0.125</td>
<td>10%CH₄/5% O₂/85%N₂ (O/C = 1)</td>
<td>700 °C/20 h</td>
<td>83</td>
<td>0.92</td>
<td>0.75</td>
<td>0.08</td>
<td>2.8</td>
<td>9.6</td>
<td>[116]</td>
</tr>
<tr>
<td>5wt.% MgO/ NiAl₂O₄</td>
<td>38,400 cm³ CH₄ g⁻¹ h⁻¹</td>
<td>0.125</td>
<td>10%CH₄/5% O₂/85%N₂ (O/C = 1)</td>
<td>700 °C/20/25 h</td>
<td>63</td>
<td>0.46</td>
<td>0.56</td>
<td>0.07</td>
<td>1.7</td>
<td>7.8</td>
<td>[117]</td>
</tr>
<tr>
<td>NiAl₂O₄ (0.5)</td>
<td>38400 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.125</td>
<td>O/C = 1</td>
<td>650 °C/3 h</td>
<td>73</td>
<td>0.67</td>
<td>0.55</td>
<td>0.18</td>
<td>2.4</td>
<td>3</td>
<td>[117]</td>
</tr>
<tr>
<td>NiAl₂O₄ (0.5)</td>
<td>38400 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.125</td>
<td>O/C = 1</td>
<td>700 °C/3 h</td>
<td>82</td>
<td>0.77</td>
<td>0.69</td>
<td>0.13</td>
<td>2.2</td>
<td>5.3</td>
<td>[117]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>4800 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.5</td>
<td>10%CH₄/5% O₂/N₂</td>
<td>550 °C</td>
<td>/</td>
<td>1.82</td>
<td>0.52</td>
<td>0.57</td>
<td>3.5</td>
<td>[118]</td>
<td></td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>4800 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.5</td>
<td>10%CH₄/5% O₂/N₂</td>
<td>650 °C</td>
<td>/</td>
<td>1.77</td>
<td>0.78</td>
<td>0.15</td>
<td>2.29</td>
<td>/</td>
<td>[118]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>4800 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.5</td>
<td>10%CH₄/5% O₂/N₂</td>
<td>750 °C</td>
<td>/</td>
<td>1.74</td>
<td>0.82</td>
<td>0.04</td>
<td>2.11</td>
<td>/</td>
<td>[118]</td>
</tr>
<tr>
<td>NiAl₂O₄</td>
<td>4800 mL CH₄ g⁻¹ h⁻¹</td>
<td>0.5</td>
<td>10%CH₄/5% O₂/N₂</td>
<td>850 °C</td>
<td>/</td>
<td>1.72</td>
<td>0.83</td>
<td>0.02</td>
<td>2.08</td>
<td>/</td>
<td>[118]</td>
</tr>
</tbody>
</table>
the Pt/NiAl$_2$O$_4$ and Pt/γ-Al$_2$O$_3$ catalysts by co-
precipitation method combined with incipient wetness
impregnation method. The phase structure, microstructure and catalytic oxidation performance of
different catalysts were studied by different characterisation methods. For the Pt/NiAl$_2$O$_4$ catalyst,
Pt than Pt/γ-Al$_2$O$_3$ catalyst has high reducing capacity,
methanol can methanol catalytic oxidation, improve
NiAl$_2$O$_4$ catalytic oxidation performance. The catalytic
oxidation performance of NiAl$_2$O$_4$ based catalyst has
been concerned by researchers since its discovery,
and is still in continuous research.

3.4. Other Applications of NiAl$_2$O$_4$ Based Catalysts

NiAl$_2$O$_4$ based catalysts has been widely used in the
degradation of dyes, drugs and catalytic oxidation of
methanol, and also has potential applications in the
photocatalytic reduction of Cr(VI) ions, photocatalytic
water hydrogen production and other fields. Bouallouche et al. [120] constructed a NiAl$_2$O$_4$/ZnO
heterojunction that allows photocatalytic reduction of
Cr(VI) ions under visible light. Of course, in terms of
dye adsorption, ternary CeO$_2$/NiO/NiAl$_2$O$_4$
nanocomposite was constructed to adsorb Direct Red
23 dye, and the results showed that this adsorbent has
high adsorption capacity. [121] Sebai et al. [122] using
nitrate route, the preparation of the spinel NiAl$_2$O$_4$ and
studied its photocatalytic hydrogen production capacity,
the result indicates that it under visible light irradiation
conditions with high hydrogen production ability. Due to
the special crystal structure, microstructure and energy
level structure of NiAl$_2$O$_4$, its application in the field of
catalysis has been paid more and more attention, and
some new research fields are also being further
studied. Therefore, its research in the new catalytic
field will be pursued by more and more researchers
and push it towards the climax of the study.

Electrocatalysis is a way of clean energy conversion. It
is very important to select a reasonable and stable
catalyst [123, 124]. Ni has higher alloying efficiency
than other metals. Therefore, when conducting
electrocatalytic experiments, choosing Ni composite
materials can better provide the required properties
[125]. Aman et al. [126] prepared a composite material
of NiAl$_2$O$_4$ and graphene oxide (GO) as an efficient
OER electrocatalyst. On the basis of good electrical
conductivity and electron transport ability of carbon-
based materials, Aman et al. [127] chose NiAl$_2$O$_4$ to be
combined with it to improve the electrochemical and
catalytic performance of OER. Regulska et al. [128]
have combined NiAl$_2$O$_4$ with graphene quantum dots
(GQDs) and conducted electrochemical studies. The
results show that for monomer NiAl$_2$O$_4$, the composite
has strong ultracapacitor and electrocatalytic
performance.

4. CONCLUSIONS AND PROSPECT

The synthesis of NiAl$_2$O$_4$ based catalysts and their
applications in the degradation of dyes, pharmaceuticals, catalytic oxidation of methanol and
other applications are reviewed. The catalytic activity
of NiAl$_2$O$_4$ based catalyst is strongly dependent on the
preparation method, crystal structure, energy level
structure and microstructure. The research on the
catalytic activity of NiAl$_2$O$_4$ based catalysts is
expanding from catalytic oxidation, photocatalytic
degradation of dyes, drugs, adsorption and
photocatalytic hydrogen production. NiAl$_2$O$_4$ based
catalyst is selective to degradation of dyes, and its
photocatalytic activity varies with the different types of ion doping. Based on the results of the study on the catalytic activity of single-component NiAl2O4, inter-doped NiAl2O4 and heterogeneous structures of multi-component NiAl2O4 heterojunction catalysts, the related catalytic mechanisms are also reviewed in detail.

As a promising catalyst, its research in some aspects is still in the exploratory stage, which can be explored in future studies as follows:

1. The construction of a new NiAl2O4 based photocatalyst heterojunction and its photocatalytic mechanism were investigated by combining the first principles calculation and experimental study.

2. Based on different intelligent algorithms, an intelligent algorithm optimized neural network model was established to predict the catalytic activity of the synthesized catalyst, and then the optimized prediction model was obtained to predict its catalytic performance.

3. High entropy alloy is a promising photocatalyst. By coupling it with NiAl2O4 to construct high entropy alloy /NiAl2O4 heterojunction photocatalyst, using the excellent electron transport ability, cocktail effect and visible light response ability of high entropy alloy, a novel photocatalyst with high efficiency can be obtained.

4. Metal-organic framework materials (MOFs) are a kind of coordination polymers. By combining MOFs with NiAl2O4 to construct MOFs/NiAl2O4 heterojunction photocatalysts, MOFs/NiAl2O4 photocatalysts are expected to be a new reliable photocatalyst due to the design of their own structures and the tunability of photon absorption.

COMPETING INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGMENTS

This work was supported by the NSAF joint Foundation of China (U2030116), the Science and Technology Research Program of Chongqing Education Commission of China (KJZD-K202001202, KJQN202201204), the Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area (No. ZD2020A0401), the Talent Introduction Project (09924601) of Chongqing Three Gorges University.

REFERENCES

for novel application in photocatalytic degradation of TBBPA under simulated sunlight irradiation. ChemistrySelect 2022, 7, e202202764.
https://doi.org/10.1002/slct.202202764

https://doi.org/10.1007/s10971-022-05937-3

https://doi.org/10.1016/j.solidstatesciences.2022.106909

https://doi.org/10.1016/j.jcis.2022.08.164

https://doi.org/10.1007/s11664-022-09769-3

https://doi.org/10.1016/j.chemosphere.2022.134973

https://doi.org/10.1016/j.mtchem.2022.100942

https://doi.org/10.1016/j.jclepro.2022.130634

https://doi.org/10.1016/j.nucana.2022.100026

https://doi.org/10.1134/S0036024422140187

https://doi.org/10.1134/S0036024422030220

https://doi.org/10.1007/s10854-022-07899-2

https://doi.org/10.1016/j.colsurfa.2022.128642

https://doi.org/10.1134/S0036024421102103

https://doi.org/10.1016/j.jlumino.2021.118660

https://doi.org/10.1016/j.ceja.2021.100089

https://doi.org/10.1016/0021-9517(91)90333-Y

https://doi.org/10.1166/jnn.2018.15217

https://doi.org/10.1111/jace.18946

[84] Yue, Z.; Zhou, J.; Li, L.; Zhang, H.; Gui, Z. Synthesis of

Spinel NiAlO$_2$ Based Catalysts: Past, Present and Future

Journal of Environmental Science and Engineering Technology, 2023, Vol. 11

27

