Recovery of Phosphors by Beneficiation Technology

Authors

  • Jing Guo College of Chemistry and Chemical Engineering, Chongqing University, Chongqing China
  • Bing Li College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing China
  • Hao Peng College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing China
  • Changyuan Tao College of Chemistry and Chemical Engineering, Chongqing University, Chongqing China

DOI:

https://doi.org/10.12974/2311-8717.2024.12.02

Keywords:

Phosphate, Beneficiation, Flotation, Electrostatic separation, Gravity separation, Magnetic separation

Abstract

Phosphorous is indispensable in the phosphoric acid industry, fertilizers, and elemental phosphorus production due to its high economic importance. The way to successfully upgrade phosphate ore was based on a full understanding of its mineralogy, mineral surface properties, mineral distribution and liberation. Most phosphate ores are not suitable for direct use in the acidulation process because they have relatively low P2O5 contents and generally contain many impurities. Thus, low-grade phosphate ores must be pretreated to reach a suitable phosphate concentrate by the following beneficiation techniques: flotation, attrition scrubbing and deslming, electrostatic separations, magnetic separation, gravity separation and calcination. Flotation was predominantly used for the beneficiation of phosphate ores, while calcination could be feasibly used when the fuel energy cost was low and the water source was limited. The chemical composition and texture of phosphate ores should be considered when applying attrition scrubbing and desliming, magnetic separation and gravity separation. Commonly, some of the above technologies should be combined to obtain excellent results.

References

B. Li, I.A. Udugama, S.S. Mansouri, W. Yu, Saeid Baroutian, K.V. Gernaey, B.R. Young, An Exploration of Barriers for Commercializing Phosphorous Recovery Technologies, Journal of Cleaner Production, 229 (2019) 1342-1354. https://doi.org/10.1016/j.jclepro.2019.05.042 DOI: https://doi.org/10.1016/j.jclepro.2019.05.042

P. Sukdeo, S. Pillay, A. Bissessur, A geochemical assessment of the middle and lower Mvoti river system, KwaZulu-Natal, South Africa, Environmental Earth Sciences, 66 (2012) 481-487. https://doi.org/10.1007/s12665-011-1256-9 DOI: https://doi.org/10.1007/s12665-011-1256-9

W.A. Farooq, F.N. Al-Mutairi, A.E.M. Khater, A.S. Al-Dwayyan, M.S. AlSalhi, M. Atif, Elemental analysis of fertilizer using laser induced breakdown spectroscopy, Optics and Spectroscopy, 112 (2012) 874-880. https://doi.org/10.1134/S0030400X12060082 DOI: https://doi.org/10.1134/S0030400X12060082

Q. Bao, L. Guo, Z. Guo, A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines, Powder Technology, 377 (2021) 149-162. https://doi.org/10.1016/j.powtec.2020.08.066 DOI: https://doi.org/10.1016/j.powtec.2020.08.066

R. El Bamiki, O. Raji, M. Ouabid, A. Elghali, O. Khadiri Yazami, J.-L. Bodinier, Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco, Minerals, 11 (2021) 1137. https://doi.org/10.3390/min11101137 DOI: https://doi.org/10.3390/min11101137

M. Derhy, Y. Taha, R. Hakkou, M. Benzaazoua, Review of the Main Factors Affecting the Flotation of Phosphate Ores, Minerals, 10 (2020) 1109. https://doi.org/10.3390/min10121109

J. Anawati, G. Azimi, Recovery and separation of phosphorus as dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade phosphate ore, RSC Adv, 10 (2020) 38640-38653. https://doi.org/10.1039/D0RA07210A DOI: https://doi.org/10.1039/D0RA07210A

X. Dong, L. Siqing, Y. Yanqing, L. Hailin, P. Yi, A Review on New Technological Progress for Beneficiation of Refractory Phosphate Ore in China, IOP Conference Series: Earth and Environmental Science, 63 (2017) 012043. https://doi.org/10.1088/1755-1315/63/1/012043 DOI: https://doi.org/10.1088/1755-1315/63/1/012043

B.W. Nelson, Sedimentary Phosphate Method for Estimating Paleosalinities, Science, 158 (1967) 917-920. https://doi.org/10.1126/science.158.3803.917 DOI: https://doi.org/10.1126/science.158.3803.917

P. Lacerda Silva, R.M. Bustin, Significance and Distribution of Apatite in the Triassic Doig Phosphate Zone, Western Canada Sedimentary Basin, in: Minerals, 2020. https://doi.org/10.20944/preprints202009.0170.v1 DOI: https://doi.org/10.20944/preprints202009.0170.v1

D.C. White, W.M. Davis, J.S. Nickels, J.D. King, R.J. Bobbie, Determination of the sedimentary microbial biomass by extractible lipid phosphate, Oecologia, 40 (1979) 51-62. https://doi.org/10.1007/BF00388810 DOI: https://doi.org/10.1007/BF00388810

Ruan, He, Chi, Review on Beneficiation Techniques and Reagents Used for Phosphate Ores, Minerals, 9 (2019) 253. https://doi.org/10.3390/min9040253 DOI: https://doi.org/10.3390/min9040253

C.E. Bucholz, Coevolution of sedimentary and strongly peraluminous granite phosphorus records, Earth and Planetary Science Letters, 596 (2022) 117795. https://doi.org/10.1016/j.epsl.2022.117795 DOI: https://doi.org/10.1016/j.epsl.2022.117795

B.M. Moudgil, T.V. Vasudevan, Beneficiation of phosphate ores containing carbonate and silica gangue, Mining, Metallurgy & Exploration, 5 (1988) 120-124. https://doi.org/10.1007/BF03402500 DOI: https://doi.org/10.1007/BF03402500

S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, Journal of Cleaner Production, 185 (2018) 891-903. https://doi.org/10.1016/j.jclepro.2018.03.094 DOI: https://doi.org/10.1016/j.jclepro.2018.03.094

R. Dabbebi, P. Perumal, S. Moukannaa, Management and valorization of phosphate beneficiation slime: a critical review, International Journal of Environmental Science and Technology, 20 (2023) 11763-11776. https://doi.org/10.1007/s13762-023-04901-0 DOI: https://doi.org/10.1007/s13762-023-04901-0

H. Amar, M. Benzaazoua, A. Elghali, R. Hakkou, Y. Taha, Waste rock reprocessing to enhance the sustainability of phosphate reserves: A critical review, Journal of Cleaner Production, 381 (2022) 135151. https://doi.org/10.1016/j.jclepro.2022.135151 DOI: https://doi.org/10.1016/j.jclepro.2022.135151

X. Zhang, Y. Tao, F. Ma, Application of Falcon centrifuge in the separation of siliceous phosphate ore, Particulate Science and Technology, 40 (2022) 958-971. https://doi.org/10.1080/02726351.2022.2027056 DOI: https://doi.org/10.1080/02726351.2022.2027056

R. Houot, R. Joussemet, J. Tracez, R. Brouard, Selective flotation of phosphatic ores having a siliceous and/or a carbonated gangue, International Journal of Mineral Processing, 14 (1985) 245-264. https://doi.org/10.1016/0301-7516(85)90049-3 DOI: https://doi.org/10.1016/0301-7516(85)90049-3

G. Li, Y. Cao, J. Liu, D. Wang, Cyclonic flotation column of siliceous phosphate ore, International Journal of Mineral Processing, 110-111 (2012) 6-11. https://doi.org/10.1016/j.minpro.2012.03.008 DOI: https://doi.org/10.1016/j.minpro.2012.03.008

F.L.d. Silva, G.F. Moreira, K.S. Pires, F.L.v. Kruger, F.G.d.S. Araújo, Quantitative phases characterization of clayey ceramics containing manganese ore tailings, Journal of Materials Research and Technology, 9 (2020) 11884-11894. https://doi.org/10.1016/j.jmrt.2020.08.075 DOI: https://doi.org/10.1016/j.jmrt.2020.08.075

M. Loutou, Y. Taha, M. Benzaazoua, Y. Daafi, R. Hakkou, Valorization of clay byproduct from moroccan phosphate mines for the production of fired bricks, Journal of Cleaner Production, 229 (2019) 169-179. https://doi.org/10.1016/j.jclepro.2019.05.003 DOI: https://doi.org/10.1016/j.jclepro.2019.05.003

M. Derqaoui, I. Aarab, A. Abidi, A. Yaacoubi, K. El Amari, A. Etahiri, A. Baçaoui, Review of the reagents used in the direct flotation of phosphate ores, Arabian Journal of Geosciences, 15 (2021) 49. https://doi.org/10.1007/s12517-021-09293-4 DOI: https://doi.org/10.1007/s12517-021-09293-4

M. Prasad, A.K. Majumder, T.C. Rao, Reverse flotation of sedimentary calcareous/dolomitic rock phosphate ore - an overview, Mining, Metallurgy & Exploration, 17 (2000) 49-55. https://doi.org/10.1007/BF03402828 DOI: https://doi.org/10.1007/BF03402828

M. Gharabaghi, M. Noaparast, M. Irannajad, Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid, Hydrometallurgy, 95 (2009) 341-345. https://doi.org/10.1016/j.hydromet.2008.04.011 DOI: https://doi.org/10.1016/j.hydromet.2008.04.011

M. Gharabaghi, M. Irannajad, M. Noaparast, A review of the beneficiation of calcareous phosphate ores using organic acid leaching, Hydrometallurgy, 103 (2010) 96-107. https://doi.org/10.1016/j.hydromet.2010.03.002 DOI: https://doi.org/10.1016/j.hydromet.2010.03.002

F. Zhang, H. Liu, Y. Ma, Y. Li, C. Tie, Q. Zhao, Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore, in: Separations, 2023. https://doi.org/10.3390/separations10080425 DOI: https://doi.org/10.3390/separations10080425

Y. Lei, B. Song, M. Saakes, R.D. van der Weijden, C.J.N. Buisman, Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate, Water Research, 142 (2018) 10-17. https://doi.org/10.1016/j.watres.2018.05.035 DOI: https://doi.org/10.1016/j.watres.2018.05.035

F.S. Mabagala, M.E. Mng'ong'o, On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability, Saudi Journal of Biological Sciences, 29 (2022) 3635-3641. https://doi.org/10.1016/j.sjbs.2022.02.056 DOI: https://doi.org/10.1016/j.sjbs.2022.02.056

L.A.F. Barros, E.E. Ferreira, A.E.C. Peres, Floatability of apatites and gangue minerals of an igneous phosphate ore, Minerals Engineering, 21 (2008) 994-999. https://doi.org/10.1016/j.mineng.2008.04.012 DOI: https://doi.org/10.1016/j.mineng.2008.04.012

Y.-x. Ma, S.E. Hoff, X.-q. Huang, J. Liu, Q.-q. Wan, Q. Song, J.-t. Gu, H. Heinz, F.R. Tay, L.-n. Niu, Involvement of prenucleation clusters in calcium phosphate mineralization of collagen, Acta Biomaterialia, 120 (2021) 213-223. https://doi.org/10.1016/j.actbio.2020.07.038 DOI: https://doi.org/10.1016/j.actbio.2020.07.038

R. Pokhrel, B.S. Gerstman, J.D. Hutcheson, P.P. Chapagain, In Silico Investigations of Calcium Phosphate Mineralization in Extracellular Vesicles, The Journal of Physical Chemistry B, 122 (2018) 3782-3789. https://doi.org/10.1021/acs.jpcb.8b00169 DOI: https://doi.org/10.1021/acs.jpcb.8b00169

B.O. Ferguson, L.C. Murdoch, M. Trumm, F. Liu, A.M. Rao, B.A. Powell, Mechanisms and kinetics of citrate-promoted dissolution of a uranyl phosphate mineral, Geochimica et Cosmochimica Acta, 318 (2022) 247-262. https://doi.org/10.1016/j.gca.2021.11.023 DOI: https://doi.org/10.1016/j.gca.2021.11.023

S. Chande, C. Bergwitz, Role of phosphate sensing in bone and mineral metabolism, Nature Reviews Endocrinology, 14 (2018) 637-655. https://doi.org/10.1038/s41574-018-0076-3 DOI: https://doi.org/10.1038/s41574-018-0076-3

X. Liu, X. Jing, P. Liu, M. Pan, Z. Liu, X. Dai, J. Lin, Q. Li, F. Wang, S. Yang, L. Wang, C. Fan, DNA Framework-Encoded Mineralization of Calcium Phosphate, Chem, 6 (2020) 472-485. https://doi.org/10.1016/j.chempr.2019.12.003 DOI: https://doi.org/10.1016/j.chempr.2019.12.003

D. Gruber, C. Ruiz-Agudo, H. Cölfen, Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates, ACS Biomaterials Science & Engineering, 9 (2023) 1791-1795. https://doi.org/10.1021/acsbiomaterials.1c01090 DOI: https://doi.org/10.1021/acsbiomaterials.1c01090

T. Feng, M. Gull, A. Omran, H. Abbott-Lyon, M.A. Pasek, Evolution of Ephemeral Phosphate Minerals on Planetary Environments, ACS Earth and Space Chemistry, 5 (2021) 1647-1656. https://doi.org/10.1021/acsearthspacechem.1c00007 DOI: https://doi.org/10.1021/acsearthspacechem.1c00007

T. Brückner, M. Meininger, J. Groll, A.C. Kübler, U. Gbureck, Magnesium Phosphate Cement as Mineral Bone Adhesive, in: Materials, 2019. https://doi.org/10.3390/ma12233819 DOI: https://doi.org/10.3390/ma12233819

H.-K. Kim, M. Mizuno, W. Vongpatanasin, Phosphate, the forgotten mineral in hypertension, Current Opinion in Nephrology and Hypertension, 28 (2019).

https://doi.org/10.1097/MNH.0000000000000503 DOI: https://doi.org/10.1097/MNH.0000000000000503

P. Wilfert, A.I. Dugulan, K. Goubitz, L. Korving, G.J. Witkamp, M.C.M. Van Loosdrecht, Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery, Water Research, 144 (2018) 312-321. https://doi.org/10.1016/j.watres.2018.07.020 DOI: https://doi.org/10.1016/j.watres.2018.07.020

M. Sajid, G. Bary, M. Asim, R. Ahmad, M. Irfan Ahamad, H. Alotaibi, A. Rehman, I. Khan, Y. Guoliang, Synoptic view on P ore beneficiation techniques, Alexandria Engineering Journal, 61 (2022) 3069-3092. https://doi.org/10.1016/j.aej.2021.08.039 DOI: https://doi.org/10.1016/j.aej.2021.08.039

H. Li, G. Lambiv Dzemua, Q. Liu, Beneficiation Studies of the Low-Grade Skarn Phosphate from Mactung Tungsten Deposit, Yukon, Canada, in: Minerals, 2021. https://doi.org/10.3390/min11040421 DOI: https://doi.org/10.3390/min11040421

D. Tian, Z. Li, D. O'Connor, Z. Shen, The need to prioritize sustainable phosphate-based fertilizers, Soil Use and Management, 36 (2020) 351-354. https://doi.org/10.1111/sum.12578 DOI: https://doi.org/10.1111/sum.12578

T. Amarasinghe, C. Madhusha, I. Munaweera, N. Kottegoda, Review on Mechanisms of Phosphate Solubilization in Rock Phosphate Fertilizer, Communications in Soil Science and Plant Analysis, 53 (2022) 944-960. https://doi.org/10.1080/00103624.2022.2034849 DOI: https://doi.org/10.1080/00103624.2022.2034849

S.S. Biswas, D.R. Biswas, R. Pal, Oxalic acid treated low grade rock phosphate can be a potent supplemental P source to grow wheat in inceptisol, Journal of Plant Nutrition, 46 (2023) 2581-2594. https://doi.org/10.1080/01904167.2022.2160737 DOI: https://doi.org/10.1080/01904167.2022.2160737

Y. Pelovski, V. Petkova, I. Dombalov, Thermotribochemical treatment of low grade natural phosphates, Journal of Thermal Analysis and Calorimetry, 88 (2007) 207-212. https://doi.org/10.1007/s10973-006-8095-z DOI: https://doi.org/10.1007/s10973-006-8095-z

B. Peng, X. Li, Z. Ma, Y. Qi, Release of fluorine and chlorine during increase of phosphate rock grade by calcination and digestion, Environmental Pollution, 270 (2021) 116321. https://doi.org/10.1016/j.envpol.2020.116321 DOI: https://doi.org/10.1016/j.envpol.2020.116321

D.R. Biswas, G. Narayanasamy, S.C. Datta, G. Singh, M. Begum, D. Maiti, A. Mishra, B.B. Basak, Changes in Nutrient Status During Preparation of Enriched Organomineral Fertilizers Using Rice Straw, Low‐Grade Rock Phosphate, Waste Mica, and Phosphate Solubilizing Microorganism, Communications in Soil Science and Plant Analysis, 40 (2009) 2285-2307. https://doi.org/10.1080/00103620902961243 DOI: https://doi.org/10.1080/00103620902961243

T. Aleksandrova, A. Elbendari, N. Nikolaeva, Beneficiation of a Low-grade Phosphate Ore Using a Reverse Flotation Technique, Mineral Processing and Extractive Metallurgy Review, 43 (2020) 22-27. https://doi.org/10.1080/08827508.2020.1806834 DOI: https://doi.org/10.1080/08827508.2020.1806834

X. Liu, Y. Zhang, T. Liu, Z. Cai, T. Chen, K. Sun, Beneficiation of a Sedimentary Phosphate Ore by a Combination of Spiral Gravity and Direct-Reverse Flotation, Minerals, 6 (2016) 38. https://doi.org/10.3390/min6020038 DOI: https://doi.org/10.3390/min6020038

A.J. Teague, M.C. Lollback, The beneficiation of ultrafine phosphate, Minerals Engineering, 27-28 (2012) 52-59. https://doi.org/10.1016/j.mineng.2011.12.007 DOI: https://doi.org/10.1016/j.mineng.2011.12.007

A. Tohry, A. Dehghani, Effect of sodium silicate on the reverse anionic flotation of a siliceous-phosphorus iron ore, Separation and Purification Technology, 164 (2016) 28-33. https://doi.org/10.1016/j.seppur.2016.03.012 DOI: https://doi.org/10.1016/j.seppur.2016.03.012

N. Nan, Y. Zhu, Y. Han, Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite, Minerals Engineering, 132 (2019) 162-168. https://doi.org/10.1016/j.mineng.2018.11.048 DOI: https://doi.org/10.1016/j.mineng.2018.11.048

F. Nakhaei, M. Irannajad, Reagents types in flotation of iron oxide minerals: A review, Mineral Processing and Extractive Metallurgy Review, 39 (2018) 89-124. https://doi.org/10.1080/08827508.2017.1391245 DOI: https://doi.org/10.1080/08827508.2017.1391245

M. Derhy, Y. Taha, R. Hakkou, M. Benzaazoua, Review of the Main Factors Affecting the Flotation of Phosphate Ores, in: Minerals, 2020. https://doi.org/10.3390/min10121109 DOI: https://doi.org/10.3390/min10121109

L.O. Filippov, A. Duverger, I.V. Filippova, H. Kasaini, J. Thiry, Selective flotation of silicates and Ca-bearing minerals: The role of nonionic reagent on cationic flotation, Minerals Engineering, 36-38 (2012) 314-323. https://doi.org/10.1016/j.mineng.2012.07.013 DOI: https://doi.org/10.1016/j.mineng.2012.07.013

K. Sun, T. Liu, Y. Zhang, X. Liu, B. Wang, C. Xu, Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS) in Phosphate Beneficiation, in: Minerals, 2017. https://doi.org/10.3390/min7020029 DOI: https://doi.org/10.3390/min7020029

A. Alsafasfeh, L. Alagha, Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation, in: Minerals, 2017. https://doi.org/10.3390/min7080145 DOI: https://doi.org/10.3390/min7080145

H. Yu, H. Wang, C. Sun, Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions, International Journal of Mining Science and Technology, 28 (2018) 453-459. https://doi.org/10.1016/j.ijmst.2018.04.010 DOI: https://doi.org/10.1016/j.ijmst.2018.04.010

A. Clapperton, C. Bazin, D. Downey, J.-S. Marois, Production of a Phosphate Concentrate from the Tailings of a Niobium Ore Concentrator, in: Minerals, 2020. https://doi.org/10.3390/min10080692 DOI: https://doi.org/10.3390/min10080692

H. Zhang, W. Sun, C. Zhang, J. He, D. Chen, Y. Zhu, Adsorption performance and mechanism of the commonly used collectors with Oxygen-containing functional group on the ilmenite surface: A DFT study, Journal of Molecular Liquids, 346 (2022) 117829. https://doi.org/10.1016/j.molliq.2021.117829 DOI: https://doi.org/10.1016/j.molliq.2021.117829

Y. Ruan, Z. Zhang, H. Luo, C. Xiao, F. Zhou, R. Chi, Ambient Temperature Flotation of Sedimentary Phosphate Ore Using Cottonseed Oil as a Collector, in: Minerals, 2017. https://doi.org/10.3390/min7050065 DOI: https://doi.org/10.3390/min7050065

S. Puvvada, P. Thompson, J.D. Miller, Dolomite rejection from crushed pebble phosphate by attrition scrubbing, Minerals Engineering, 143 (2019) 105932. https://doi.org/10.1016/j.mineng.2019.105932 DOI: https://doi.org/10.1016/j.mineng.2019.105932

S.S. Ibrahim, K.E. Yassin, T.R. Boulos, Processing of an East Mediterranean phosphate ore sample by an integrated attrition scrubbing/classification scheme (part one), Separation Science and Technology, 55 (2020) 967-979. https://doi.org/10.1080/01496395.2019.1575413 DOI: https://doi.org/10.1080/01496395.2019.1575413

R. Ciccu, M. Ghiani, G. Ferrara, Selective Tribocharging of Particles for Separation, KONA Powder and Particle Journal, 11 (1993) 5-16. https://doi.org/10.14356/kona.1993006 DOI: https://doi.org/10.14356/kona.1993006

S. Moradi, D. Moseley, F. Hrach, A. Gupta, Electrostatic beneficiation of diatomaceous earth, International Journal of Mineral Processing, 169 (2017) 142-161. https://doi.org/10.1016/j.minpro.2017.11.008 DOI: https://doi.org/10.1016/j.minpro.2017.11.008

L. Zhang, J. Hou, X.T. Bi, J.R. Grace, T. Janke, C. Arato, Electrostatic beneficiation of fly ash in a free-falling system, Particuology, 10 (2012) 154-160. https://doi.org/10.1016/j.partic.2011.07.006 DOI: https://doi.org/10.1016/j.partic.2011.07.006

J.K. Kim, H.C. Cho, S.C. Kim, H.S. Chun, Electrostatic beneficiation of fly ash using an ejector‐tribocharger, Journal of Environmental Science and Health, Part A, 35 (2000) 357-377. https://doi.org/10.1080/10934520009376976 DOI: https://doi.org/10.1080/10934520009376976

C. Lv, S. Wen, K. Yang, S. Bai, Beneficiation of High-Phosphorus Siderite Ore by Acid Leaching and Alkaline Oxide Reinforced Carbothermic Reduction-Magnetic Separation Process, steel research international, 88 (2017) 1600314. https://doi.org/10.1002/srin.201600314 DOI: https://doi.org/10.1002/srin.201600314

J. Yin, X. Lv, C. Bai, G. Qiu, S. Ma, B. Xie, Dephosphorization of Iron Ore Bearing High Phosphorous by Carbothermic Reduction Assisted with Microwave and Magnetic Separation, ISIJ International, 52 (2012) 1579-1584. https://doi.org/10.2355/isijinternational.52.1579 DOI: https://doi.org/10.2355/isijinternational.52.1579

Q.F. Shu, Y. Liu, Effects of basicity, MgO and MnO on mineralogical phases of CaO-FeOx-SiO2-P2O5 slag, Ironmaking & Steelmaking, 45 (2018) 363-370. https://doi.org/10.1080/03019233.2016.1274463 DOI: https://doi.org/10.1080/03019233.2016.1274463

S.K. Tripathy, D.S. Rao, C. Eswaraiah, D. Sahoo, Applied Mineralogical Investigation on the Nature of Phosphorous in the Basic Oxygen Furnace Slag, Transactions of the Indian Institute of Metals, 74 (2021) 2319-2334. https://doi.org/10.1007/s12666-021-02319-1 DOI: https://doi.org/10.1007/s12666-021-02319-1

G. Li, J. Liang, J. Long, D. Guan, Z. Li, S. Seetharaman, J. Li, A Novel Process for Separation of Magnetite and Phosphorous Phases from a CaO-SiO2-FeO-P2O5 Slag, ISIJ International, 62 (2022) 1556-1559. https://doi.org/10.2355/isijinternational.ISIJINT-2021-578 DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2021-578

A.M.H. Shaikh, S.G. Dixit, Beneficiation of phosphate ores using high gradient magnetic separation, International Journal of Mineral Processing, 37 (1993) 149-162. https://doi.org/10.1016/0301-7516(93)90010-8 DOI: https://doi.org/10.1016/0301-7516(93)90010-8

J. Gao, Y. Zhong, L. Guo, Z. Guo, Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity, Metallurgical and Materials Transactions B, 47 (2016) 1080-1092. https://doi.org/10.1007/s11663-015-0575-8 DOI: https://doi.org/10.1007/s11663-015-0575-8

X. Tang, R. Li, D. Han, X. Wu, Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics, Environmental Pollution, 266 (2020) 115210. https://doi.org/10.1016/j.envpol.2020.115210 DOI: https://doi.org/10.1016/j.envpol.2020.115210

L. Palliyaguru, U.S. Kulathunga, L.I. Jayarathna, C.D. Jayaweera, P.M. Jayaweera, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, International Journal of Minerals, Metallurgy and Materials, 27 (2020) 846-855. https://doi.org/10.1007/s12613-020-2030-3 DOI: https://doi.org/10.1007/s12613-020-2030-3

M.H. Woo, J.M. Cho, K.-W. Jun, Y.J. Lee, J.W. Bae, Thermally Stabilized Cobalt-Based Fischer-Tropsch Catalysts by Phosphorous Modification of Al2O3: Effect of Calcination Temperatures on Catalyst Stability, ChemCatChem, 7 (2015) 1460-1469. https://doi.org/10.1002/cctc.201402994 DOI: https://doi.org/10.1002/cctc.201402994

K.C. Bal Krishna, M.R. Niaz, D.C. Sarker, T. Jansen, Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge, Journal of Environmental Management, 200 (2017) 359-365. https://doi.org/10.1016/j.jenvman.2017.06.003 DOI: https://doi.org/10.1016/j.jenvman.2017.06.003

B. Meesschaert, A. Monballiu, K. Ghyselbrecht, C. Van Goethem, H. Halleux, L. Pinoy, Pilot scale recovery of phosphorus as calcium phosphate from nitrified UASB effluent of a potato processor and subsequent reuse in the wet process for phosphoric acid production, Journal of Environmental Chemical Engineering, 8 (2020) 104593. https://doi.org/10.1016/j.jece.2020.104593 DOI: https://doi.org/10.1016/j.jece.2020.104593

Downloads

Published

2024-08-07

How to Cite

Guo, J. ., Li, B. ., Peng, H. ., & Tao, C. . (2024). Recovery of Phosphors by Beneficiation Technology. Journal of Composites and Biodegradable Polymers, 12, 7–15. https://doi.org/10.12974/2311-8717.2024.12.02

Issue

Section

Articles