Graphene Oxide Composites as Environmentally-Friendly Enzyme Inhibitors

Authors

  • Seyed Mostafa Biazar Department of Soil, water and ecosystem science, University of Florida, USA
  • Ali Karimi Bavandpour Department of Microbiology and Molecular Genetics, Michigan State University, USA

DOI:

https://doi.org/10.12974/2311-8741.2023.11.03

Keywords:

Acetylcholinesterase enzyme, Biological applications, Graphene Oxide, Phosphoramide, Fluorescence

Abstract

This work presents a concise approach to synthesizing water-soluble and homogeneous nanocomposites of "graphene oxide/phosphoramide ligands" (GO/L) without the need for additional reducing agents. These nanocomposites have the potential to exhibit enhanced biological applications, such as antifungal, enzyme immobilization and antibacterial activities, compared to bare graphene oxide (GO) and phosphoramides. This research delves into the detailed investigation of three GO-based membranes, where GO serves as substrate for phosphoramide ligands. It has been demonstrated that these membranes possess wider interlayer D-spacing compared to GO. The compounds were characterized using various analytical techniques, including IR and NMR spectroscopy, AFM, XRD analysis, and UV-visible spectroscopy. Furthermore, this study delved into the mechanisms underlying the immobilization of Acetylcholinesterase enzyme (AChE) by GO and its newly synthesized derivatives. The results obtained from this study demonstrated that the GO/L films possessed enhanced biological activity compared to both phosphoramide ligands and bare GO alone. The objective of this research was to develop simple and efficient methods for synthesizing potent compounds that can find applications in various biological fields. Notably, these compounds offer advantages in terms of their environmental friendliness, cost-effectiveness, and time efficiency. The findings of this investigation contribute to a deeper understanding of GO-based membranes and open possibilities for rational design in diverse areas such as drug development and food industry.

References

Akamatsu, M. (2011). Importance of physicochemical properties for the design of new pesticides. Journal of agricultural and food chemistry, 59(7), 2909-2917. https://doi.org/10.1021/jf102525e DOI: https://doi.org/10.1021/jf102525e

Biazar, S. M., Fard, A. F., Singh, V. P., Dinpashoh, Y., & Majnooni-Heris, A. (2020a). Estimation of evaporation from saline water. Environmental Monitoring and Assessment, 192, 1-17. https://doi.org/10.1007/s10661-020-08634-2 DOI: https://doi.org/10.1007/s10661-020-08634-2

Biazar, S. M., Fard, A. F., Singh, V. P., Dinpashoh, Y., & Majnooni-Heris, A. (2020b). Estimation of evaporation from saline-water with more efficient input variables. Pure and Applied Geophysics, 177, 5599-5619. https://doi.org/10.1007/s00024-020-02570-5 DOI: https://doi.org/10.1007/s00024-020-02570-5

Biazar, S. M., & Ferdosi, F. B. (2020c). An investigation on spatial and temporal trends in frost indices in Northern Iran. Theoretical and Applied Climatology, 141(3-4), 907-920. https://doi.org/10.1007/s00704-020-03248-7 DOI: https://doi.org/10.1007/s00704-020-03248-7

Chen, W., Liu, P., Min, L., Zhou, Y., Liu, Y., Wang, Q., & Duan, W. (2018). Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-micro letters, 10, 1-13. https://doi.org/10.1007/s40820-018-0190-8 DOI: https://doi.org/10.1007/s40820-018-0190-8

Dinpashoh, Y., Biazar, S. M., & Rahmani, V. (2022). Point and regional analysis of drought in Northern Iran. Arabian Journal of Geosciences, 15(24), 1747. https://doi.org/10.1007/s12517-022-11021-5 DOI: https://doi.org/10.1007/s12517-022-11021-5

Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., & Kaner, R. B. (2010). A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS nano, 4(7), 3845-3852. https://doi.org/10.1021/nn100511a DOI: https://doi.org/10.1021/nn100511a

Deb, M., Saxena, S., Bandyopadhyaya, R., & Shukla, S. (2021). β-Cyclodextrin functionalized rGO films for lead sensing. Materials Science and Engineering: B, 272, 115323. https://doi.org/10.1016/j.mseb.2021.115323 DOI: https://doi.org/10.1016/j.mseb.2021.115323

Gholivand, K., Ebrahimi Valmoozi, A. A., Rahimzadeh Dashtaki, M., Mohamadpanah, F., Dusek, M., Eigner, V., & Ghadamyari, M. (2017). Synthesis, crystal structure, fluorescence assay, molecular docking and QSAR/QSPR studies of Temephos derivatives as human and insect cholinesterase inhibitors. ChemistrySelect, 2(28), 8828-8840.2:8828-8840" https://doi.org/10.1002/slct.201701157 DOI: https://doi.org/10.1002/slct.201701157

Gholivand, K., Roshanian, Z., Rahimzadeh Dashtaki, M., Hosseini, Z., Ebrahimi Valmoozi, A. A., Sharifi, M., & Akbari, N. (2021a). Monophosphoramide derivatives: synthesis and crystal structure, theoretical and experimental studies of their biological effects. Molecular Diversity, 1-16. https://doi.org/10.1007/s11030-020-10160-9 DOI: https://doi.org/10.1007/s11030-020-10160-9

Gholivand, K., Dashtaki, M. R., Ardebili, S. A. A., Mohammadpour, M., & Valmoozi, A. A. E. (2021b). New graphene oxide-phosphoramide nanocomposites as practical tools for biological applications including anti-bacteria, anti-fungi and anti-protein. Journal of Molecular Structure, 1240, 130528. https://doi.org/10.1016/j.molstruc.2021.130528 DOI: https://doi.org/10.1016/j.molstruc.2021.130528

Gholivand, K., Ebrahimi Valmoozi, A. A., & Bonsaii, M. (2014). Synthesis and crystal structure of new temephos analogues as cholinesterase inhibitor: Molecular docking, qsar study, and hydrogen bonding analysis of solid state. Journal of agricultural and food chemistry, 62(25), 5761-5771. https://doi.org/10.1021/jf5011726 DOI: https://doi.org/10.1021/jf5011726

Goncalves, G., Marques, P. A., Granadeiro, C. M., Nogueira, H. I., Singh, M. K., & Gracio, J. (2009). Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 21(20), 4796-4802. https://doi.org/10.1021/cm901052s DOI: https://doi.org/10.1021/cm901052s

Holm, R. E., & Baron, J. J. (2002). Evolution of the crop protection industry. In Pesticides in Agriculture and the Environment (pp. 309-340). CRC Press. https://doi.org/10.1201/9780203909430.ch10 DOI: https://doi.org/10.1201/9780203909430.ch10

He, L., Chang, Y., Zhu, J., Bi, Y., An, W., Dong, Y., & Wang, S. (2021). A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Frontiers of Chemical Science and Engineering, 15, 410-420. https://doi.org/10.1007/s11705-020-1950-9 DOI: https://doi.org/10.1007/s11705-020-1950-9

Isazadeh, M., Biazar, S. M., & Ashrafzadeh, A. (2017). Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences, 76, 1-14. https://doi.org/10.1007/s12665-017-6938-5 DOI: https://doi.org/10.1007/s12665-017-6938-5

Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747-748. https://doi.org/10.1093/bioinformatics/16.8.747 DOI: https://doi.org/10.1093/bioinformatics/16.8.747

Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F., & Tour, J. M. (2008). Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 130(48), 16201-16206. https://doi.org/10.1021/ja806499w DOI: https://doi.org/10.1021/ja806499w

Mohan, A. N., & Panicker, S. (2019). Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Scientific reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-40916-9 DOI: https://doi.org/10.1038/s41598-019-40916-9

Moghtaderi, N., Habibian Dehkordi, B., & Oskooi, B. (2017). Characterization of the Houze-Vali iron ore in the centre of Iran using magnetic gradient tensor data. Bollettino di Geofisica Teorica ed Applicata, 58(3), 205-216.

Sharifi, M., Ghadamyari, M., Gholivand, K., Valmoozi, A. A. E., & Sajedi, R. H. (2017). Characterization of acetylcholinesterase from elm left beetle, Xanthogaleruca luteola and QSAR of temephos derivatives against its activity. Pesticide biochemistry and physiology, 136, 12-22. https://doi.org/10.1016/j.pestbp.2016.08.010 DOI: https://doi.org/10.1016/j.pestbp.2016.08.010

Soltani, S., Abolhasani, H., Zarghi, A., & Jouyban, A. (2010). QSAR analysis of diaryl COX-2 inhibitors: comparison of feature selection and train-test data selection methods. European journal of medicinal chemistry, 45(7), 2753-2760. https://doi.org/10.1016/j.ejmech.2010.02.055 DOI: https://doi.org/10.1016/j.ejmech.2010.02.055

Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564. https://doi.org/10.1021/la801744a DOI: https://doi.org/10.1021/la801744a

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034 DOI: https://doi.org/10.1016/j.carbon.2007.02.034

Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide biochemistry and physiology, 121, 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014 DOI: https://doi.org/10.1016/j.pestbp.2014.11.014

Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene− carbon nanotube hybrid materials for high-performance transparent conductors. Nano letters, 9(5), 1949-1955. https://doi.org/10.1021/nl9001525 DOI: https://doi.org/10.1021/nl9001525

Wu, H., Gao, G., Zhou, X., Zhang, Y., & Guo, S. (2012). Control on the formation of Fe 3 O 4 nanoparticles on chemically reduced graphene oxide surfaces. CrystEngComm, 14(2), 499-504. https://doi.org/10.1039/C1CE05724C DOI: https://doi.org/10.1039/C1CE05724C

Zhang, J., Shen, G., Wang, W., Zhou, X., & Guo, S. (2010). Individual nanocomposite sheets of chemically reduced graphene oxide and poly (N-vinyl pyrrolidone): preparation and humidity sensing characteristics. Journal of Materials Chemistry, 20(48), 10824-10828. https://doi.org/10.1039/c0jm02440f DOI: https://doi.org/10.1039/c0jm02440f

Downloads

Published

2023-06-21

How to Cite

Biazar, S. M. ., & Bavandpour, A. K. . (2023). Graphene Oxide Composites as Environmentally-Friendly Enzyme Inhibitors. Journal of Environmental Science and Engineering Technology, 11, 28–34. https://doi.org/10.12974/2311-8741.2023.11.03

Issue

Section

Articles