Mechanical Characterization Study of Additive as Nanofiller in Poly (ε-Caprolactone) Nanocomposite

Authors

  • Prarthana Dhanvijay R & D Advisor, Logical Process Engineering Solutions, Mumbai, India

DOI:

https://doi.org/10.12974/2311-8792.2023.09.1

Keywords:

Biocompatibility, Nanofiller, Poly (ε-caprolactone)

Abstract

In order to keep with ever evolving technology in biomedical field, the demand for Poly (ε-caprolactone) (PCL) is gaining importance due to its biodegradability and biocompatibility. However, the low mechanical, barrier and thermal strength of PCL restricts its widespread use. These drawbacks of virgin PCL can be rectified by incorporating nanofiller into the PCL matrix. Till date, research has been carried out incorporating nano-fiber into PCL but to the best of our knowledge there is hardly any literature regarding organoclay modified nanofiller-PCL composites. The present study represents PCL nanocomposites preparation and characterization. The FTIR and XRD spectra observe uniform distribution of nanofiller in the PCL matrix. The characterization of mechanical properties shows enhancement in strength till 3.5 wt% loading and declining trend afterwards indicating agglomeration of nanofiller at higher wt% ratio. The increase in tensile strength without sacrificing elongation at break provides these composites with very attractive mechanical properties.

References

Pavlidou, S. & Papaspyrides, C.D., 2008. A review onpolymer-layered silicate nanocomposites. Progress in Polymer Science (Oxford).33(12), 1119-1216.https://doi.org/10.1016/j.progpolymsci.2008.07.008

Akat, H. et al., 2008. Synthesis and characterization ofpolymer/clay nanocompos ites by intercalated chain transferagent. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2008.04.018[3] Chen, B. & Evans, J.R.G., 2006. Poly(-caprolactone)-Clay Nanocomposites: Structure and Mechanical Properties.Macromolecules, 39, pp.747-754.https://doi.org/10.1021/ma052154a

Gorrasi G., M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P.D., 2003. Vapor barrier properties ofpolycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44, p.2271-2279. https://doi.org/10.1016/S0032-3861(03)00108-3

Elbay Malikmammadova, Tugba Endogan Tanira, Aysel Kiziltaya,c, Vasif Hasircia,b,d and Nesrin Hasircia, Journal ofBiomaterials Science, Polymer Edition, 2018 Vol. 29, NOS . 7-9, 863-893.

Sylva Holešová, Karla Cˇ ech Barabaszová, Marianna Hundáková, Michaela Šcˇuková, Kamila Hrabovská, KamilJoszko, Magdalena Antonowicz, Bo˙zena Gzik-Zroska, Development of Novel Thin Polycaprolactone (PCL)/ClayNanocomposite Films with Antimicrobial Activity Promoted by the Study of Mechanical, Thermal, and Surface PropertiesPolymers 2021, 13, 3193. https://doi.org/10.3390/polym13183193

Coombes, A.G.A.; Rizzi, S.C.; Williamson, M.; Barralet, J.E.; Downes, S.; Wallace, W.A. Precipitation casting ofpolycaprolactone for applications in tissue engineering anddrug delivery. Biomaterials 2004, 25, 315-325.https://doi.org/10.1016/S0142-9612(03)00535-0

Fatih Canbolat, M.; Celebioglu, A.; Uyar, T. Drug deliverysystem based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers.Colloid. Surf. B 2014, 115, 15-21.https://doi.org/10.1016/j.colsurfb.2013.11.021

Schlesinger, E.; Ciaccio, N.; Desai, T.A. Polycaprolactonethin-film drug delivery systems: Empirical and predictivemodels for device design. Mater. Sci. Eng.: C 2015, 57, 232-239. https://doi.org/10.1016/j.msec.2015.07.027

Chang, S.H.; Lee, H.J.; Park, S.; KIM, Y.; Jeong, B. Fast Degradable Polycaprolactone for Drug Delivery.Biomacromolecules 2018, 19, 2302-2307.https://doi.org/10.1021/acs.biomac.8b00266

Ng, K.W.; Achuth, H.N.; Moochhala, S.; Lim, T.C.;Hutmacher, D.W. In vivo evaluation of an ultra-thinpolycaprolactone film as a wound dressing. J. Biomater. Sc i.-Polym. E. 2012, 18, 925-938.https://doi.org/10.1163/156856207781367693

Thomas, R.; Soumya, K.R.; MATHEW, J.; Radhakrishnan,E.K. Electrospun Polycaprolactone Membrane Incorporatedwith Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material. Appl. Biochem. Biotechnol. 2015, 176,2213-2224. https://doi.org/10.1007/s12010-015-1709-9

Muwaffak, Z.; Goyanes, A.; Clark, V.; Basit, A.W.; Hilton, S.T.; Gaisford, S. Patient-specific 3D scanned and 3D printedantimicrobial polycaprolactone wound dressings. Int. J. Pharm. 2017, 527, 161-170. https://doi.org/10.1016/j.ijpharm.2017.04.077

Bou-Francis, A.; Piercey, M.; Al-Qatami, O.; Mazzanti, G.;Khattab, R.; Ghanem, A. Polycaprolactone blends for fracture fixation in low load-bearing applications. J. Appl.Polym. Sci. 2020, 137, 48940.https://doi.org/10.1002/app.48940

Park, J.; Lee, S.J.; Jo, H.H.; Lee, J.H.; Kim, W.D.; Lee, J.Y.;Park, S.A. Fabrication and characterization of 3D-printed bone-like-tricalcium phosphate/polycaprolactone scaffolds fordental tissue engineering. J. Ind. Eng. Chem. 2017, 46, 175-181.https://doi.org/10.1016/j.jiec.2016.10.028

Ho, C.-C.; Fang, H.-Y.; Wang, B.; Huang, T.-H.; Shie, M.-Y.The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties onhuman dental pulp cells. Int. Endod. J. 2018, 51, e291-e300. https://doi.org/10.1111/iej.12799

Kweon, H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24, 801-808.https://doi.org/10.1016/S0142-9612(02)00370-8

Williams, J.M.; Adewunmi, A.; Schek, R.M.; Flanagan, C.L.;Krebsbach, P.H.; Feinberg, S.E.; Hollister, S.J.; Das, S. Bonetissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005, 26,4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057

Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissueengineering application. Colloid. Surf. B. 2012, 93, 226-234. https://doi.org/10.1016/j.colsurfb.2012.01.011

Yeong, W.Y.; Sudarmadji, N.; Yu, H.Y.; Chua, C.K.; Leong, K.F.; Venkatraman, S.S.; Boey, Y.C.F.; Tan, L.P. Porouspolycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser s intering. Acta Biomater. 2010, 6, 2028-2034.https://doi.org/10.1016/j.actbio.2009.12.033

Patra, S.; Remy, M.; Ray, A.L.; Brouillaud, B.; Amedee, J.;Gupta, B.; Bordenave, L. A Novel Route to Polycaprolactone Scaffold for Vascular Tissue Engineering. J. Biomater. Tiss.Eng. 2013, 3, 289-299.https://doi.org/10.1166/jbt.2013.1087

Y. Li, C. Han, J. Bian, X. Zhang, L. Han, L.D., 2013.Crystallization and morphology studies of biodegradablepoly(e-caprolactone)/silica nanocomposites. Polymer Composite, 34, p.131-140.https://doi.org/10.1002/pc.22384

K. K. Gupta, A. Kundan, P. K. Mishra, P. Srivastava, S.Mohanty, N. K. Singh, A. Mishra, P.M., 2012.Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases.Phys. Chem. Chem. Phys, 14, p.12844-12853. https://doi.org/10.1039/C2CP41789H

R. Augustine, H. Malik, D. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S.T., 2014. Electrospun polycaprolactone/ZnOnanocomposite membranes as biomaterials with antibacterialand cell adhesion properties. J. Polym. Res, 21, p.347https://doi.org/10.1007/s10965-013-0347-6

Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S. & Kenny,J.M., 2010. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation andStability, 95, pp.2126-2146.https://doi.org/10.1016/j.polymdegradstab.2010.06.007

P. Bordes, E. Pollet, L.A., 2009. Nano-biocomposites:Biodegradable polyester/nanoclay systems. Progress in Polymer Science (Oxford), 34, p.125-155.https://doi.org/10.1016/j.progpolymsci.2008.10.002

Downloads

Published

2023-03-01

How to Cite

Dhanvijay, P. . (2023). Mechanical Characterization Study of Additive as Nanofiller in Poly (ε-Caprolactone) Nanocomposite. Journal of Nanotechnology in Diagnosis and Treatment, 9, 1–7. https://doi.org/10.12974/2311-8792.2023.09.1

Issue

Section

Articles