Development of Dextran Coated Zinc Oxide Nanoparticles with Antimicrobial Properties
DOI:
https://doi.org/10.12974/2311-8717.2024.12.01Keywords:
Zinc oxide, Nanoparticles, Dextran, Antimicrobial propertiesAbstract
Dextran coated zinc oxide nanoparticles with various zinc concentration have been developed in this study. Various characterization techniques were used in order to study the physical-chemical properties of the obtained samples. The structure of the samples was investigated using X-Ray diffraction (XRD), while the morphology was studied by scanning electron microscopy (SEM). Information regarding the porosity of the samples were obtained with the aid of Brunauer-Emmett-Teller (BET) method. The results of the physico-chemical characterization depicted the obtaining of a nanocomposite with homogenous and uniform morphology. Furthermore, the antimicrobial activity of the samples was also investigated against Gram-positive bacterial strains (Staphylococcus aureus 0364, Enterococcus faecalis ATCC 29212 and Bacillus subtilis), Gram-negative bacterial strains (Pseudomonas aeruginosa 1397, Escherichia Coli ATCC 259220 and against fungal strain Candida albicans ATCC 10231. The results of the antimicrobial assay showed that the nanocomposites exhibited good inhibitory effects against all the tested microorganisms making them suitable candidates for the further development of antimicrobial agents for biomedical applications.
References
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015; 109(7): 309-18. https://doi.org/10.1179/2047773215Y.0000000030
World Health Organization WHO global strategy for containment of antimicrobial resistance. Geneva: WHO; 2001 (accessed November 5, 2023).
World Health Organization The evolving threat of antimicrobial resistance. Options for action. Geneva: WHO Library Cataloguing-in-Publication Data; 2012 (accessed November 6, 2023).
Centres for Disease Control and Prevention, US Department of Health and Human Services. Antibiotic resistance threats in the United States. Atlanta: CDC; 2013. Available from: http: //www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed November 7, 2023)
Dörr T, Moynihan PJ, Mayer C. Bacterial Cell Wall Structure and Dynamics. Front Microbiol 2019; 10: 2051. https://doi.org/10.3389/fmicb.2019.02051
Rajagopal M, Walker S. Envelope structures of gram-positive bacteria. Curr Top Microbiol Immunol 2017; 404: 1-44. https://doi.org/10.1007/82_2015_5021
Rapp RP, Record KE. Gram-Negative Bacteria. In: Mainous AG, Pomeroy C. (eds) Management of Antimicrobials in Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. 200; 43-59. https://doi.org/10.1385/1-59259-036-5:43
Yagoub AEA, Al-Shammari GM, Al-Harbi LN, Subash-Babu P, Elsayim R, Mohammed MA, Yahya MA, Fattiny SZA. Antimicrobial Properties of Zinc Oxide Nanoparticles Synthesized from Lavandula pubescens Shoot Methanol Extract. Applied Sciences 2022; 12(22): 11613. https://doi.org/10.3390/app122211613
Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front Microbiol 2018; 9: 1-10. https://doi.org/10.3389/fmicb.2018.01218
Liu J, Wang Y, Ma J, Peng Y, Wang A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloys Compd 2019; 783. Elsevier Ltd, pp. 898-918. https://doi.org/10.1016/j.jallcom.2018.12.330
Kołodziejczak-Radzimska A, Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review. Materials (Basel) 2014; 7(4): 2833-2881. https://doi.org/10.3390/ma7042833
Lallo da Silva B, Abuçafy MP, Berbel Manaia E, Oshiro Junior JA, Chiari-Andréo BG, Pietro RCR, Chiavacci LA. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview. Int J Nanomedicine 2019; 2(14): 9395-9410. https://doi.org/10.2147/IJN.S216204
Stanković, A, Dimitrijević S, Uskoković D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf B Biointerfaces 2013; 102: 21-28. https://doi.org/10.1016/j.colsurfb.2012.07.033
Motelica-Heino M, Predoi MV, Ciobanu SC, Iconaru SL, Predoi D. Studies of New Layer Formation on the Surface of Zinc Doped Hydroxyapatite/Chitosan Composite Coatings in Biological Medium. Coatings 2023; 13(2): 472. https://doi.org/10.3390/coatings13020472
Predoi D, Iconaru SL, Predoi MV. Fabrication of Silver- and Zinc-Doped Hydroxyapatite Coatings for Enhancing Antimicrobial Effect. Coatings 2020; 10(9): 905. https://doi.org/10.3390/coatings10090905
Predoi D, Iconaru SL, Predoi MV. Dextran-Coated Zinc-Doped Hydroxyapatite for Biomedical Applications. Polymers 2019; 11(5): 886.
https://doi.org/10.3390/polym11050886
Negrila CC, Predoi MV, Iconaru SL, Predoi D. Development of Zinc-Doped Hydroxyapatite by Sol-Gel Method for Medical Applications. Molecules 2018; 23(11): 2986. https://doi.org/10.3390/molecules23112986
Zarrintaj P, Saeb MR, Jafari SH, Mozafari M. Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2020; 511-537. https://doi.org/10.1016/B978-0-12-816006-0.00018-9
Ahmed, S. Advanced green materials: An overview. In Ahmed S. Advanced Green Materials; Ed.; Woodhead Publishing: Sawston, UK, 2021; 1-13. https://doi.org/10.1016/B978-0-12-819988-6.00001-X
Varghese SA, Rangappa SM, Siengchin S, Parameswaranpillai J. Natural polymers and the hydrogels prepared from them. In Yu C. Hydrogels Based on Natural Polymers; Ed.; Elsevier: Amsterdam, The Netherlands, 2020; 17-47. https://doi.org/10.1016/B978-0-12-816421-1.00002-1
Hussain MA, Shah A, Jantan I, Tahir MN, Shah MR, Ahmed R, Bukhari S.N.A. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles. J Nanobiotechnol 2014; 12(53): 1-6. https://doi.org/10.1186/s12951-014-0053-5
Predoi S-A, Iconaru SL, Predoi D. In vitro and In vivo Biological Assays of Dextran Coated Iron Oxide Aqueous Magnetic Fluids. Pharmaceutics 2023; 15(1): 177. https://doi.org/10.3390/pharmaceutics15010177
https: //www.who.int/news-room/fact-sheets/detail/-antimicrobial-resistance
Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938; 60: 309-319. https://doi.org/10.1021/ja01269a023
Dutta S, Chattopadhyay S, Sarkar A, Chakrabarti M, Sanyal D, Jana D. Role of Defects in Tailoring Structural, Electrical and Optical Properties of ZnO. Prog Mater Sci 2009; 54(1): 89-136. https://doi.org/10.1016/j.pmatsci.2008.07.002
Ramírez D, Gómez H, Riveros G, Schrebler R, Henríquez R, Lincot D. Effect of Zn(II) Concentration on the Morphology of Zinc Oxide Nanorods During Electrodeposition on Very Thin Alumina Membrane Templates. J. Phys. Chem. C 2010; 114(35): 14854-14859. https://doi.org/10.1021/jp1056754
Majumder S, Basnet P, Mukherjee J, Chatterjee, S. Effect of zinc precursor on morphology of ZnO nanoparticles. AIP Conference Proceedings 2020; 2273: 040006; https://doi.org/10.1063/5.0024934
Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 2006; 41(12): 2699-2711. https://doi.org/10.1080/10934520600966177
Stanković A, Dimitrijević S, Uskoković D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf B 2013; 102: 21-28. https://doi.org/10.1016/j.colsurfb.2012.07.033
Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 2010; 121(1): 198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020
Atmaca S, Gül K, Cicek R. The effect of zinc on microbial growth. Turk J Med Sci 1998; 28(6): 595-598.
Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater 2012; 8(2): 904-915. https://doi.org/10.1016/j.actbio.2011.09.031
Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011; 77(7): 2325-2331. https://doi.org/10.1128/AEM.02149-10
Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015; 7(3): 219-242. https://doi.org/10.1007/s40820-015-0040-x
Zhang L, Ding Y, Povey M, York D. ZnO nanofluids-a potential antibacterial agent. Prog Nat Sci 2008; 18(8): 939-944. https://doi.org/10.1016/j.pnsc.2008.01.026