Study on Copper Protection in H2S-rich Marine Environments using SAMs from Sargassum Extract
DOI:
https://doi.org/10.12974/2311-8717.2025.13.02Keywords:
Corrosion, Copper, Sargassum fluitans III, Self-assembled monolayers (SAMs)Abstract
Corrosion is a complex and progressive degradation process that occurs when an aggressive external agent attacks a metal and is known to cause significant harm to materials, the environment, and metals. One important factor in these physicochemical phenomena is the atmosphere. Factors like temperature, humidity, and salinity are relevant. For most materials, the marine environment is the ideal example of an environment that is naturally aggressive. Because few metals can resist it, they must be protected. For instance, when copper corrodes in an alkaline environment, copper oxide forms a protective film on the metal's surface, reducing its ability to attack. Nevertheless, the metal eventually deteriorates because of the instability of the surrounding environment, so this solution is only temporary. These days, plants-based inhibitors represent a real source of robust, long-lasting protection. They can function as natural inhibitors of metals and their alloys due to their very beneficial natural characteristics. Therefore, the focus of this work is on how Sargassum fluitans III self-assembled monolayers (SAMs) inhibit copper corrosion in coastal environments. When copper is submerged directly in the inhibiting solution, the extract successfully prevents copper corrosion, according to the findings of surface analysis and electrochemistry. In this article, for example, it was demonstrated that sargassum extract halves the loss of copper thickness, reducing it from 8.00±0.61 mm to 4.76±0.52 mm on a site heavily exposed to sea salts.
References
Veleva, L.; Quintana, P.; Ramanauskas, R.; Pomes, R.; Maldonado, L. Mechanism of Copper Patina Formation in Marine Environments. Electrochimica Acta. 1996, 41, 1641-1645.https://doi.org/10.1016/0013-4686(95)00417-3
Aastrup, T.; Wadsak, M.; Schreiner, M.; Leygraf, C. Experimental in Situ Studies of Copper Exposed to Humidified Air. Corrosion Science. 2000, 42, 957-967.https://doi.org/10.1016/S0010-938X(99)00125-0
EL-Mahdy, G.A. Atmospheric Corrosion of Copper under Wet/Dry Cyclic Conditions. Corrosion Science. 2005, 47, 1370-1383.https://doi.org/10.1016/j.corsci.2004.07.034
Watanabe, M.; Tomita, M.; Ichino, T. Characterization of Corrosion Products Formed on Copper in Urban, Rural/Coastal, and Hot Spring Areas. Journal of The Electrochemical Society. 2001, 148.https://doi.org/10.1149/1.1418377
Fonseca, I.T.E.; Picciochi, R.; Mendonça, M.H.; Ramos, A.C. The Atmospheric Corrosion of Copper at Two Sites in Portugal: A Comparative Study. Corrosion Science. 2004, 46, 547-561.https://doi.org/10.1016/S0010-938X(03)00176-8
Farro, N.; Veleva, L.; Aguilar, P. Copper Marine Corrosion: I. Corrosion Rates in Atmospheric and Seawater Environments of Peruvian Port. The Open Corrosion Journal. 2009, 2, 130-138.https://doi.org/10.2174/1876503300902010130
Lu, X.; Liu, Y.; Zhao, H.; Pan, C.; Wang, Z. Corrosion Behavior of Copper in Extremely Harsh Marine Atmosphere in Nansha Islands, China. Transactions of Nonferrous Metals Society of China. 2021, 31, 703-714.https://doi.org/10.1016/S1003-6326(21)65531-0
Mendoza, A.R.; Corvo, F.; Gómez, A.; Gómez, J. Influence of the Corrosion Products of Copper on Its Atmospheric Corrosion Kinetics in Tropical Climate. Corrosion Science. 2004, 46, 1189-1200.https://doi.org/10.1016/j.corsci.2003.09.014
Araban, V.; Kahram, M.; Rezakhani, D. Evaluation of Copper Atmospheric Corrosion in Different Environments of Iran. Corrosion Engineering, Science and Technology. 2016, 51, 1-9.https://doi.org/10.1080/1478422X.2016.1144265
Syed, S. Outdoor Atmospheric Corrosion of Copper in Saudi Arabia. Corrosion Engineering, Science and Technology. 2008, 43, 267-272.https://doi.org/10.1179/174327807X234705
Odnevall Wallinder, I.; Zhang, X.; Goidanich, S.; Le Bozec, N.; Herting, G.; Leygraf, C. Corrosion and Runoff Rates of Cu and Three Cu-Alloys in Marine Environments with Increasing Chloride Deposition Rate. Sci Total Environ. 2014, 472, 681-694.https://doi.org/10.1016/j.scitotenv.2013.11.080
Morcillo, M.; Chico, B.; Fuente, D.; Simancas, J. Looking Back on Contributions in the Field of Atmospheric Corrosion Offered by the MICAT Ibero-American Testing Network. International Journal of Corrosion. 2012, 2012.https://doi.org/10.1155/2012/824365
Lopesino, P.; Alcántara, J.; De la Fuente, D.; Chico, B.; Jiménez, J.A.; Morcillo, M. Corrosion of Copper in Unpolluted Chloride-Rich Atmospheres. Metals. 2018, 8, 866.https://doi.org/10.3390/met8110866
Hamilton, J.C.; Farmer, J.C.; Anderson, R.J. In Situ Raman Spectroscopy of Anodic Films Formed on Copper and Silver in Sodium Hydroxide Solution. J. Electrochem. Soc. 1986, 133, 739.https://doi.org/10.1149/1.2108666
Strehblow, H.H.; Titze, B. The Investigation of the Passive Behaviour of Copper in Weakly Acid and Alkaline Solutions and the Examination of the Passive Film by Esca and ISS. Electrochimica Acta. 1980, 25, 839-850.https://doi.org/10.1016/0013-4686(80)90036-5
FitzGerald, K.; Nairn, J.; Skennerton, G.; Atrens, A. Atmospheric Corrosion of Copper and the Colour, Structure and Composition of Natural Patinas on Copper. Corrosion Science. 2006, 48, 2480-2509.https://doi.org/10.1016/j.corsci.2005.09.011
Graedel, T.E. Copper Patinas Formed in the Atmosphere—II. A Qualitative Assessment of Mechanisms. Corrosion Science. 1987, 27, 721-740.https://doi.org/10.1016/0010-938X(87)90053-9
Cai, Y.; Xu, Y.; Zhao, Y.; Ma, X. Atmospheric Corrosion Prediction: A Review. Corrosion Reviews. 2020, 38, 299-321.https://doi.org/10.1515/corrrev-2019-0100
Corvo, F.; López, T.; Dzib, L.; Martin, Y.; Castañeda, A.; González, E.; Perez, T. Outdoor-Indoor Corrosion of Metals in Tropical Coastal Atmospheres. Corrosion Science. 2008, 50, 220-230.https://doi.org/10.1016/j.corsci.2007.06.011
Said Ahmed, M.; Lebrini, M.; Pellé, J.; Rioual, S.; Amintas, O.; Boullanger, C.; Lescop, B.; Roos, C. Study of Atmospheric Corrosion of Zinc in a Tropical Marine Environment Rich in H 2 S, Resulting from the Decomposition of Sargassum Algae. Corrosion and Materials. 2024.https://doi.org/10.3390/met13050982
Ahmed, M.S.; Lebrini, M.; Lescop, B.; Pellé, J.; Rioual, S.; Amintas, O.; Boullanger, C.; Roos, C. Corrosion of Copper in a Tropical Marine Atmosphere Rich in H2S Resulting from the Decomposition of Sargassum Algae. Metals. 2023, 13, 982.https://doi.org/10.3390/met13050982
Decheng, K.; Chaofang, D.; Xiaoqing, N.; Cheng, M.; Kui, X.; Xiaogang, L. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment. Applied Surface Science. 2018, 445, 543-553.https://doi.org/10.1016/j.apsusc.2018.06.029
Al Zoubi, W.; Gun Ko, Y. Self-assembly of hierarchical N-heterocycles-inorganic materials into three-dimensional structure for superior corrosion protection. Chemical Engineering Journal. 2019, 356, 850-856.https://doi.org/10.1016/j.cej.2018.09.089
Davoodi, F.; Akbari-Kharaji, E.; Danaee, I.; Zaarei, D.; Shishesaz, M. Corrosion Behavior of Epoxy/Polysulfide Coatings Incorporated with Nano-CeO2 Particles on Low Carbon Steel Substrate. Corrosion. 2022, 78, 785-798.https://doi.org/10.5006/4116
Khalid Hossain, M.; Rubel, M.H.K.; Ali Akbar, Md.; Hafez Ahmed, M.; Haque, N.; Ferdous Rahman, Md.; Hossain, J.; Monower Hossain, K. A review on recent applications and future prospects of rare earth oxides in corrosion and thermal barrier coatings, catalysts, tribological, and environmental sectors. Ceramics International. 2022, 48, 32588-32612.https://doi.org/10.1016/j.ceramint.2022.07.220
Cáceres, L.; Frez, Y.; Galleguillos, F.; Soliz, A.; Gómez-Silva, B.; Borquez, J. Aqueous Dried Extract of Skytanthus Acutus Meyen as Corrosion Inhibitor of Carbon Steel in Neutral Chloride Solutions. Metals. 2021, 11, 1992.https://doi.org/10.3390/met11121992
Ortega Ramirez, A.T.; Barrantes, L.; Casallas Martin, B.D.; Cortés Salazar, N. Application of Green Inhibitors for Corrosion Control in Metals. Review. DYNA. 2021, 88, 160-168.https://doi.org/10.15446/dyna.v88n217.93871
Shang, Z.; Zhu, J. Overview on Plant Extracts as Green Corrosion Inhibitors in the Oil and Gas Fields. Journal of Materials Research and Technology. 2021, 15, 5078-5094.https://doi.org/10.1016/j.jmrt.2021.10.095
Expositions Aux Émanations d’algues Sargasses En Décomposition. ANSES. 2017.
Suedile, F. Extraction, caractérisation et étude électrochimique de molécules actives issues de la forêt amazonienne pour la protection du zinc contre la corrosion. Université des Antilles et de la Guyane, 2014.
Lebrini, M.; Robert, F.; Lecante, A.; Roos, C. Corrosion Inhibition of C38 Steel in 1 M Hydrochloric Acid Medium by Alkaloids Extract from Oxandra Asbeckii Plant. Corrosion Science. 2011, 53.https://doi.org/10.1016/j.corsci.2010.10.006
Lambert, P.; Said-Ahmed, M.; Jama, C.; Lebrini, M. Molecules from Sargassum Algae as Green Inhibitor for C38 in HCl Medium: Extraction, Characterization and Electrochemical Study. Coatings. 2023, 13, 2076.https://doi.org/10.3390/coatings13122076
Said Ahmed, M.; Lescop, B.; Pellé, J.; Rioual, S.; Roos, C.; Lebrini, M. Corrosion of Carbon Steel in a Tropical Marine Environment Enhanced by H2S from Sargassum Seaweed Decomposition. Metals. 2024, 14, 676.https://doi.org/10.3390/met14060676
Landolt, D. Corrosion et chimie de surfaces des métaux (Traité des matériaux, volume 12). Société Française de Métallurgie et de Matériaux; Presses polytechniques et universitaires romandes, 2003.
Ahmed, M.S.; Lebrini, M.; Lescop, B.; Pellé, J.; Rioual, S.; Amintas, O.; Boullanger, C.; Roos, C. Corrosion of Copper in a Tropical Marine Atmosphere Rich in H2S Resulting from the Decomposition of Sargassum Algae. Metals. 2023, 13, 982.https://doi.org/10.3390/met13050982
Zhang, X.; Wallinder, I.O.; Leygra, C. Études Mécanistes de l’écaillage Des Produits de Corrosion Sur Le Cuivre et Les Alliages à Base de Cuivre Dans Les Environnements Marins. Corrosion Science. 2014, 85.
Lopesin, P.; Alcantara, J.; De la Fuente, D.; Chico, B.; Jiménez, J.; Morcillo, M. Corrosion Du Cuivre Dans Les Atmosphères Riches En Chlorures Non Polluées. Métaux. 2018.
Valdez salas, B.; Wiener, M.; Zlatev, R.; Lopez Badilla, G.; Ramos, R.; Carrillo, M.; Nedev, N.; Curiel, M.; Rosas, N.; Rull, J. Copper Corrosion by Atmospheric Pollutants in the Electronics Industry. ISRN Corrosion. 2013, 2013.https://doi.org/10.1155/2013/846405
Zaafarany, I.; Boller, H. Corrosion of Copper Electrode in Sodium Sulfide Solution. Journal of Saudi Chemical Society. 2010, 14, 183-189.https://doi.org/10.1016/j.jscs.2010.02.019
Krätschmer, A.; Odnevall, I.; Leygraf, C. The Evolution of Outdoor Copper Patina. Corrosion Science. 2002, 44, 425-450.https://doi.org/10.1016/S0010-938X(01)00081-6
Zhang, R.; Schmidt, R.; Gilbert, J.; Zhang, J. Effets de La Pollution Gazeuse et Des Conditions Thermiques Sur Les Taux de Corrosion Du Cuivre et de l’argent Dans l’environnement Des Centres de Données. Bâtiments et Environnements Urbains Sains, Intelligents et Résilients. 2018.
Zittlau, A.; Shi, Q.; Boerio-Goates, J.; Woodfield, B.; Majzlan, J. Thermodynamics of the Basic Copper Sulfates Antlerite, Posnjakite, and Brochantite. Chemie der Erde - Geochemistry. 2013, 73, 39-50.https://doi.org/10.1016/j.chemer.2012.12.002