Fused Deposition Modelling of Wood-Plastic Composites: Materials, Processes, and Future Directions
DOI:
https://doi.org/10.12974/2311-8717.2025.13.04Keywords:
Fused Deposition Modelling (FDM), Wood-Plastic Composite (WPC), Sustainable Manufacturing, Mechanical Anisotropy, Process Optimisation, 4D PrintingAbstract
Fused Deposition Modelling (FDM) of Wood-Plastic Composites (WPCs) offers a compelling pathway towards sustainable manufacturing. However, the progression from prototyping to functional components is governed by a fundamental conflict: the pursuit of high wood content for sustainability directly opposes the thermo-rheological constraints of the extrusion process. This review critically analyses this conflict, arguing it is the primary source of the two main defects that limit structural applications: severe mechanical anisotropy from weak interlayer adhesion, and multi-scale porosity inherent to both the feedstock and the printing process. By deconstructing the material systems and process-structure-property relationships, this review synthesises current strategies to mitigate these challenges. Ultimately, this review argues that the future of the field depends on a paradigm shift towards intelligent manufacturing, integrating predictive modelling with novel bio-based materials and leveraging the unique properties of WPCs for functionally graded components and environmentally responsive 4D printing.
References
J. Saroia et al., “A review on 3D printed matrix polymer composites: its potential and future challenges,” Jan. 01, 2020, Springer.
L. Schneider and H. Gärtner, “Additive manufacturing for lab applications in environmental sciences: Pushing the boundaries of rapid prototyping,” Dendrochronologia (Verona), vol. 76, Dec. 2022. https://doi.org/10.1016/j.dendro.2022.126015
S. Pervaiz, T. A. Qureshi, G. Kashwani, and S. Kannan, “3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review,” Aug. 02, 2021, MDPI AG. https://doi.org/10.3390/ma14164520
J. Mogan et al., “Fused Deposition Modelling of Polymer Composite: A Progress,” Jan. 01, 2023, MDPI.
P. Dudek, “FDM 3D printing technology in manufacturing composite elements,” Archives of Metallurgy and Materials, vol. 58, no. 4, pp. 1415-1418, 2013. https://doi.org/10.2478/amm-2013-0186
M. Bhayana, J. Singh, A. Sharma, and M. Gupta, “A review on optimized FDM 3D printed Wood/PLA bio composite material characteristics,” Mater Today Proc, 2023. https://doi.org/10.1016/j.matpr.2023.03.029
A. K. Gupta, Krishnanand, and Mohammad Taufik, “Effect of process parameters on performances measured in filament and pellets-based additively manufactured parts,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 239, no. 1, pp. 489-512, Jun. 2023. https://doi.org/10.1177/09544089231175207
M. K. Gülseren, V. Kovan, and T. Tezel, “Three-dimensional printability of bismuth alloys with low melting temperatures,” J Manuf Process, vol. 92, pp. 238-246, Apr. 2023. https://doi.org/10.1016/j.jmapro.2023.02.057
P. Jain and A. M. Kuthe, “Feasibility study of manufacturing using rapid prototyping: FDM approach,” in Procedia Engineering, Elsevier Ltd, 2013, pp. 4-11. https://doi.org/10.1016/j.proeng.2013.08.275
S. Kumar, R. Singh, T. P. Singh, and A. Batish, “3D printed tensile and flexural prototypes of thermoplastic matrix reinforced with multi-materials: A statistical analysis,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 79-85. https://doi.org/10.1016/j.matpr.2020.07.175
P. M. Angelopoulos, M. Samouhos, and M. Taxiarchou, “Functional fillers in composite filaments for fused filament fabrication: A review,” in Materials Today: Proceedings, Elsevier Ltd, 2019, pp. 4031-4043. https://doi.org/10.1016/j.matpr.2020.07.069
A. Zotti, T. Paduano, F. Napolitano, S. Zuppolini, M. Zarrelli, and A. Borriello, “Fused Deposition Modeling of Polymer Composites: Development, Properties and Applications,” Apr. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym17081054
D. J. Gardner and L. Wang, “Additive Manufacturing of Wood-Based Materials for Composite Applications,” Jun. 2019, [Online]. Available: https://www.slideshare.net/HorizonWatching/s12-3-d-printing-2014-
C. Billings, R. Siddique, B. Sherwood, J. Hall, and Y. Liu, “Additive Manufacturing and Characterization of Sustainable Wood Fiber-Reinforced Green Composites,” Journal of Composites Science, vol. 7, no. 12, Dec. 2023. https://doi.org/10.3390/jcs7120489
B. Tsegaye, A. Ström, and M. S. Hedenqvist, “Thermoplastic lignocellulose materials: A review on recent advancement and utilities,” Jun. 01, 2023, Elsevier Ltd. https://doi.org/10.1016/j.carpta.2023.100319
N. R. Rajendran Royan, J. S. Leong, W. N. Chan, J. R. Tan, and Z. S. B. Shamsuddin, “Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing,” Jul. 02, 2021, MDPI AG. https://doi.org/10.3390/polym13142289
S. Helaoui, A. Koubaa, H. Nouri, M. Beauregard, and S. Guessasma, “3D printing of biodegradable biocomposites based on forest industrial residues by fused deposition modeling,” Ind Crops Prod, vol. 222, Dec. 2024. https://doi.org/10.1016/j.indcrop.2024.119799
J. Ramaux, I. Ziegler-Devin, A. Besserer, and C. Nouvel, “3D Printing of Wood Composites: State of the Art and Opportunities,” Oct. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym16192827
N. M. Nurazzi et al., “Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments,” Aug. 02, 2021, MDPI AG. https://doi.org/10.3390/polym13162710
D. Krapež Tomec and M. Kariž, “Use of Wood in Additive Manufacturing: Review and Future Prospects,” Mar. 01, 2022, MDPI. https://doi.org/10.3390/polym14061174
P. F. Sommerhuber, J. L. Wenker, S. Rüter, and A. Krause, “Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option,” Resour Conserv Recycl, vol. 117, pp. 235-248, Feb. 2017. https://doi.org/10.1016/j.resconrec.2016.10.012
Y. Tao, H. Wang, Z. Li, P. Li, and S. Q. Shi, “Development and application ofwood flour-filled polylactic acid composite filament for 3d printing,” Materials, vol. 10, no. 4, Mar. 2017. https://doi.org/10.3390/ma10040339
N. Narlıoğlu, T. Salan, and M. H. Alma, “Properties of 3D-Printed Wood Sawdust-Reinforced PLA Composites,” 2021, North Carolina State University. https://doi.org/10.15376/biores.16.3.5467-5480
A. A. Samy, A. Golbang, E. Harkin-Jones, E. Archer, D. Tormey, and A. McIlhagger, “Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed,” J Manuf Process, vol. 70, pp. 389-399, Oct. 2021. https://doi.org/10.1016/j.jmapro.2021.08.054
E. Heriberto Arias et al., “Effect Analysis of Fuse Deposition Modeling Processes on Mechanical Properties of Wood Plastic Composites International Journal of Engineering Sciences & Research Technology Effect Analysis of Fuse Deposition Modeling Processes on Mechanical Properties of Wood Plastic Composites,” © International Journal of Engineering Sciences & Research Technology, 2021.
K. Bryll, E. Piesowicz, P. Szymański, W. Slaczka, and M. Pijanowski, “Polymer Composite Manufacturing by FDM 3D Printing Technology,” in MATEC Web of Conferences, EDP Sciences, Nov. 2018. https://doi.org/10.1051/matecconf/201823702006
M. Kariz, M. Sernek, M. Obućina, and M. K. Kuzman, “Effect of wood content in FDM filament on properties of 3D printed parts,” Mater Today Commun, vol. 14, pp. 135-140, Mar. 2018.
https://doi.org/10.1016/j.mtcomm.2017.12.016
A. Le Duigou, M. Castro, R. Bevan, and N. Martin, “3D printing of wood fibre biocomposites: From mechanical to actuation functionality,” Mater Des, vol. 96, pp. 106-114, Apr. 2016. https://doi.org/10.1016/j.matdes.2016.02.018
G. Pathinettampadian, M. Vellaisamy, T. Kumar Muthu Kumar, M. Agnelo Browne, and M. Kumar Subramaniyan, “Some studies on functional behavior of novel multi-layered material for integrated structural application,” Journal of Industrial and Engineering Chemistry, vol. 131, pp. 545-557, Mar. 2024.https://doi.org/10.1016/j.jiec.2023.10.059
S. Guessasma, S. Belhabib, and H. Nouri, “Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling: Effect of printing temperature,” Polymers (Basel), vol. 11, no. 11, Nov. 2019. https://doi.org/10.3390/polym11111778
J. Sciare, R. Sarda-Estève, O. Favez, H. Cachier, G. Aymoz, and P. Laj, “Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM),” Atmos Environ, vol. 42, no. 9, pp. 2158-2172, Mar. 2008.
https://doi.org/10.1016/j.atmosenv.2007.11.053
C. Gozdecki, A. Wilczynski, M. Kociszewski, J. Tomaszewska, and S. Zajchowski, “Mechanical properties of wood-polypropylene composites with industrial wood particles of different sizes,” Wood and Fiber Science, vol. 44, pp. 14-21, Jan. 2012.
B. Timurkutluk, A. A. Sunecli, C. Timurkutluk, T. Altan, and S. Onbilgin, “Investigation of a sacrificial template material suitable for fabrication of anode support microtubes in microtubular solid oxide fuel cells,” Int J Hydrogen Energy, vol. 143, pp. 931-938, Jul. 2025. https://doi.org/10.1016/j.ijhydene.2024.11.445
S. G. Pardo, C. Bernal, A. Ares, M. J. Abad, and J. Cano, “Rheological, thermal, and mechanical characterization of fly ash-thermoplastic composites with different coupling agents,” Polym Compos, vol. 31, no. 10, pp. 1722-1730, Oct. 2010. https://doi.org/10.1002/pc.20962
D. Krapež Tomec, M. Schöflinger, J. Leßlhumer, J. Žigon, M. Humar, and M. Kariž, “Effect of thermal modification of wood on the rheology, mechanical properties and dimensional stability of wood composite filaments and 3D-printed parts,” Wood Mater Sci Eng, vol. 19, no. 6, pp. 1251-1265, 2024. https://doi.org/10.1080/17480272.2024.2316740
W. Jasiński et al., “3D Printing Wood-PLA Composites: The Impact of Wood Particle Size,” Polymers (Basel), vol. 17, no. 9, May 2025. https://doi.org/10.3390/polym17091165
Armin Karimi, Davood Rahmatabadi, and Mostafa Baghani, “Various FDM Mechanisms Used in the Fabrication of Continuous-Fiber Reinforced Composites: A Review,” Polymers (MDPI), vol. 16, no. 6, Mar. 2024, Accessed: Oct. 06, 2025. [Online]. Available: https://doi.org/10.3390/polym16060831
L. Kristak, R. Reh, M. C. Barbu, and E. M. Tudor, “Advances in Wood-Based Composites,” Apr. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/books978-3-7258-4011-3
Z. Liu, Q. Lei, and S. Xing, “Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 3743-3753, Sep. 2019. https://doi.org/10.1016/j.jmrt.2019.06.034
M. R. Khosravani, S. Rezaei, H. Ruan, and T. Reinicke, “Fracture behavior of anisotropic 3D-printed parts: experiments and numerical simulations,” Journal of Materials Research and Technology, vol. 19, pp. 1260-1270, Jul. 2022. https://doi.org/10.1016/j.jmrt.2022.05.068
L. Chen et al., “Enhancing wood-plastic composites for high-performance structural applications,” Compos B Eng, vol. 299, Jun. 2025. https://doi.org/10.1016/j.compositesb.2025.112410
T. Beran, T. Mulholland, F. Henning, N. Rudolph, and T. A. Osswald, “Nozzle Clogging Factors During Fused Filament Fabrication of Spherical Particle Filled Polymers,” 2018. https://doi.org/10.1016/j.addma.2018.08.009
M. Samykano et al., “FDM Printed PLA/Coconut Wood Composite: Compression Characteristics and Parametric Optimization,” Journal of Advanced Research in Micro and Nano Engineering, vol. 28, no. 1, pp. 30-46, Feb. 2025. https://doi.org/10.37934/armne.28.1.3046
I. F. Kyriakidis, N. Kladovasilakis, E. M. Pechlivani, and K. Tsongas, “Mechanical Performance of Recycled 3D Printed Sustainable Polymer-Based Composites: A Literature Review,” Jun. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jcs8060215
S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review,” Polym Eng Sci, vol. 49, no. 7, pp. 1253-1272, 2009. https://doi.org/10.1002/pen.21328
J. Z. Lu, A. Professor, H. S. McNabb, and J. Professor, “Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments Society of Wood Science and Technology State-of-the-Art Review Chemical Coupling In Wood Fiber And Polymer Composites: A Review Of Coupling Agents And Treatments’ Qinglin W u t,” 2000. [Online]. Available: https://www.researchgate.net/publication/280136866
T. Gurunathan, S. Mohanty, and S. K. Nayak, “A review of the recent developments in biocomposites based on natural fibres and their application perspectives,” Jun. 29, 2015, Elsevier Ltd. https://doi.org/10.1016/j.compositesa.2015.06.007
D. Marin, L. M. Chiarello, V. R. Wiggers, A. D. de Oliveira, and V. Botton, “Effect of coupling agents on properties of vegetable fiber polymeric composites: review,” 2023, Associacao Brasileira de Polimeros. https://doi.org/10.1590/0104-1428.20220118
Cecilia Zárate-Pérez, Rodrigo Ramírez-Aguilar, Edgar A. Franco-Urquiza, and Carlos Sánchez-Alvarado, “The Role of Coupling Agents in the Mechanical and Thermal Properties of Polypropylene/Wood Flour Composites,” Macromol (MDPI), vol. 3, no. 1, Feb. 2023. https://doi.org/10.3390/macromol3010006
X. Han et al., “Technology and mechanism of enhanced compatibilization of polylactic acid-grafted glycidyl methacrylate,” Ind Crops Prod, vol. 172, Nov. 2021. https://doi.org/10.1016/j.indcrop.2021.114065
J. Zhu, K. Chandrashekhara, V. Flanigan, and S. Kapila, “Manufacturing and mechanical properties of soy-based composites using pultrusion,” Compos Part A Appl Sci Manuf, vol. 35, no. 1, pp. 95-101, Jan. 2004. https://doi.org/10.1016/j.compositesa.2003.08.007
A. Dey and N. Yodo, “A systematic survey of FDM process parameter optimization and their influence on part characteristics,” Sep. 01, 2019, MDPI Multidisciplinary Digital Publishing Institute.
N. K. Suniya and A. K. Verma, “A review on optimization of process parameters of fused deposition modeling,” Jun. 01, 2023, MIM Research Group.
I. Malashin et al., “Machine Learning in 3D and 4D Printing of Polymer Composites: A Review,” Nov. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym16223125
N. A. Fountas, J. D. Kechagias, S. P. Zaoutsos, and N. M. Vaxevanidis, “Experimental and statistical study on the effects of fused filament fabrication parameters on the tensile strength of hybrid PLA/Wood fabricated parts,” in Procedia Structural Integrity, Elsevier B.V., 2022, pp. 638-645. https://doi.org/10.1016/j.prostr.2022.05.072
V. Mazzanti and F. Mollica, “A review of wood polymer composites rheology and its implications for processing,” Oct. 01, 2020, MDPI AG. https://doi.org/10.3390/polym12102304
Ibrahim M. Alarifi, “Revolutionising fabrication advances and applications of 3D printing with composite materials a review,” Virtual Phys Prototyp, vol. 19, no. 1, Aug. 2024. https://doi.org/10.1080/17452759.2024.2390504
T. C. Yang and C. H. Yeh, “Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (FDM): The effects of printing speed,” Polymers (Basel), vol. 12, no. 6, p. 1334, Jun. 2020. https://doi.org/10.3390/polym12061334
K. Vigneshwaran et al., “The acoustic properties of FDM printed wood/PLA-based composites,” Composites Part C: Open Access, vol. 15, Oct. 2024. https://doi.org/10.1016/j.jcomc.2024.100532
A. Morvayová, N. Contuzzi, L. Fabbiano, and G. Casalino, “Multi-Attribute Decision Making: Parametric Optimization and Modeling of the FDM Manufacturing Process Using PLA/Wood Biocomposites,” Materials, vol. 17, no. 4, Feb. 2024. https://doi.org/10.3390/ma17040924
R. Gupta, A. Noraziah, A. Gupta, and A. N. Abdalla, “Overview of Simulation in Wood Plastic Composites Manufacturing,” Indian J Sci Technol, vol. 10, no. 7, pp. 1-5, Feb. 2017.
J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties,” Compos Sci Technol, vol. 181, Sep. 2019. https://doi.org/10.1016/j.compscitech.2019.107688
A. Patti, G. Cicala, C. Tosto, L. Saitta, and D. Acierno, “Characterization of 3D printed highly filled composite: Structure, thermal diffusivity and dynamic-mechanical analysis,” Chem Eng Trans, vol. 86, pp. 1537-1542, 2021.
H. Hou, Y. Yue, J. Liu, D. Xi, and S. Liu, “Numerical Simulation and Experimental Study of the Stress Formation Mechanism of FDM with Different Printing Paths,” 2022.
Anis Bahar, Ameur El Amine Hamami, Ferhat Benmahiddine, Sofiane Belhabib, Rafik Belarbi, and Sofiane Guessasma, “The Thermal and Mechanical Behaviour of Wood-PLA Composites Processed by Additive Manufacturing for Building Insulation,” Polymers (MDPI), vol. 15, Jul. 2023. https://doi.org/10.3390/polym15143056
P. Żur, A. Kołodziej, and A. Baier, “Finite Elements Analysis of PLA 3D-printed Elements and Shape Optimization,” 2019.
Ł. Woźniak, K. Marszałek, and S. Skapska, “Influence of Steviol Glycosides on the Stability of Vitamin C and Anthocyanins,” J Agric Food Chem, vol. 62, pp. 11264-11269, Nov. 2014. https://doi.org/10.1021/jf504001t
M. Kianifar, M. Azadi, and F. Heidari, “Impacts of cell type and strut thickness on bending fatigue lifetime of additive-manufactured PLA-wood parts,” Journal of Materials Research and Technology, vol. 38, pp. 1651-1663, Sep. 2025. https://doi.org/10.1016/j.jmrt.2025.08.025
R. F. Faidallah, A. M. Abd-El Nabi, M. M. Hanon, Z. Szakál, and I. Oldal, “Compressive and bending properties of 3D-printed wood/PLA composites with Re-entrant honeycomb core,” Results in Engineering, vol. 24, Dec. 2024. https://doi.org/10.1016/j.rineng.2024.103023
Z. Yang, F. Wang, Y. Dun, and D. Li, “Path-Based Discrete Modeling and Process Simulation for Thermoplastic Fused Deposition Modeling Technology,” Polymers (Basel), vol. 17, no. 8, Apr. 2025. https://doi.org/10.3390/polym17081026
S. Palanisamy et al., “Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review,” 2024, John Wiley and Sons Inc. https://doi.org/10.1155/adv/3480281
N. Zohdi and R. C. Yang, “Material anisotropy in additively manufactured polymers and polymer composites: A review,” Oct. 01, 2021, MDPI. https://doi.org/10.3390/polym13193368
Jordan Garcia, “Anisotropic Material Behavior of 3D Printed Fiber Composites,” Doctoral Dissertation, University of Kentucky, Lexington, Kentucky, 2023. https://doi.org/10.4271/2024-01-2573
M. Somireddy and A. Czekanski, “Anisotropic material behavior of 3D printed composite structures - Material extrusion additive manufacturing,” Mater Des, vol. 195, Oct. 2020. https://doi.org/10.1016/j.matdes.2020.108953
E. Cuan-Urquizo, E. Barocio, V. Tejada-Ortigoza, R. B. Pipes, C. A. Rodriguez, and A. Roman-Flores, “Characterization of the mechanical properties of FFF structures and materials: A review on the experimental, computational and theoretical approaches,” Materials, vol. 12, no. 6, Mar. 2019. https://doi.org/10.3390/ma12060895
M. Zhou et al., “Modeling of bonding strength for Fused Filament Fabrication considering bonding interface evolution and molecular diffusion,” J Manuf Process, vol. 68, pp. 1485-1494, Aug. 2021. https://doi.org/10.1016/j.jmapro.2021.06.064
T. Kuncius, M. Rimašauskas, and R. Rimašauskienė, “Interlayer adhesion analysis of 3d-printed continuous carbon fibre-reinforced composites,” Polymers (Basel), vol. 13, no. 10, May 2021. https://doi.org/10.3390/polym13101653
X. Zhai, T. Corre, and V. Lazarus, “A FDM-based experimental benchmark for evaluating quasistatic crack propagation in anisotropic linear elastic materials,” Eng Fract Mech, vol. 324, Jul. 2025. https://doi.org/10.1016/j.engfracmech.2025.111175
A. Kantaros, M. Katsantoni, T. Ganetsos, and N. Petrescu, “The Evolution of Thermoplastic Raw Materials in High-Speed FFF/FDM 3D Printing Era: Challenges and Opportunities,” Mar. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ma18061220
F. Breish, C. Hamm, and S. Andresen, “Nature’s Load-Bearing Design Principles and Their Application in Engineering: A Review,” Sep. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/biomimetics9090545
K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Apr. 01, 2016, Elsevier Ltd. https://doi.org/10.1016/j.compositesa.2015.08.038
K. R. Hart, R. M. Dunn, J. M. Sietins, C. M. Hofmeister Mock, M. E. Mackay, and E. D. Wetzel, “Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing,” Polymer (Guildf), vol. 144, pp. 192-204, May 2018. https://doi.org/10.1016/j.polymer.2018.04.024
N. von Windheim, D. W. Collinson, T. Lau, L. C. Brinson, and K. Gall, “The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA),” Rapid Prototyp J, vol. 27, no. 7, pp. 1327-1336, 2021. https://doi.org/10.1108/RPJ-08-2020-0205
A. Y. Al-Maharma, S. P. Patil, and B. Markert, “Effects of porosity on the mechanical properties of additively manufactured components: a critical review,” Dec. 01, 2020, IOP Publishing Ltd. https://doi.org/10.1088/2053-1591/abcc5d
T. Liu, J. hong Zhu, W. Zhang, S. Belhabib, and S. Guessasma, “Microstructure and compressive behaviour of PLA/PHA-wood lattice structures processed using additive manufacturing,” Polym Test, vol. 141, Dec. 2024. https://doi.org/10.1016/j.polymertesting.2024.108612
A. H. Espera, J. R. C. Dizon, A. D. Valino, and R. C. Advincula, “Advancing flexible electronics and additive manufacturing,” Jpn J Appl Phys, vol. 61, no. SE, Jun. 2022. https://doi.org/10.35848/1347-4065/ac621a
J. Go, S. N. Schiffres, A. G. Stevens, and A. J. Hart, “Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design,” Addit Manuf, vol. 16, pp. 1-11, 2017. https://doi.org/10.1016/j.addma.2017.03.007
C. Li, W. Cheng, and J. Hu, “Nozzle Problem Analysis and Optimization of FDM 3D Printer,” 2017.
M. Goudswaard, R. Real, C. Snider, L. E. Muñoz Camargo, N. Salgado Zamora, and B. Hicks, “Knowledge dimensions in prototyping: Investigating the what, when and how of knowledge generation during product development,” Design Science, vol. 9, Sep. 2023. https://doi.org/10.1017/dsj.2023.24
R. Mishra, S. Chakrabarty, and A. Arora, “Nozzle clogging during direct ink writing of polymer matrix composites - A numerical simulation insight into the process,” Sep. 19, 2025. https://doi.org/10.21203/rs.3.rs-7648374/v1
T. F. Zach and M. C. Dudescu, “The Three-Dimensional Printing of Composites: A Review of the Finite Element/Finite Volume Modelling of the Process,” Apr. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI).
I. Baran, K. Cinar, N. Ersoy, R. Akkerman, and J. H. Hattel, “A Review on the Mechanical Modeling of Composite Manufacturing Processes,” Archives of Computational Methods in Engineering, vol. 24, no. 2, pp. 365-395, Apr. 2017. https://doi.org/10.1007/s11831-016-9167-2
F. Jiang et al., “Numerical Analysis of Physical Characteristics and Heat Transfer Decoupling Behavior in Bypass Coupling Variable Polarity Plasma Arc,” Materials, vol. 15, no. 9, May 2022. https://doi.org/10.3390/ma15093174
S. Somayaji, Narahari, S. R. Srivatsa, and D. M. Pranav, “Application of materials-engineering research to Indian traditional artforms, A case-study: Bhujakeerthi of Yakshagana,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2379-2386. https://doi.org/10.1016/j.matpr.2020.12.398
G. Chen et al., “Simulating and Predicting the Part Warping in Fused Deposition Modeling by Thermal-Structural Coupling Analysis,” 3D Print Addit Manuf, vol. 10, no. 1, pp. 70-82, Feb. 2023. https://doi.org/10.1089/3dp.2021.0119
T. T. Huynh, N. V. T. Tien V.T., Q. M. Nguyen, and T. K. Nguyen, “Minimizing warpage for macro-size fused deposition modeling parts,” Computers, Materials and Continua, vol. 68, no. 3, pp. 2913-2923, 2021. https://doi.org/10.32604/cmc.2021.016064
M. Abouhamzeh, J. Sinke, and R. Benedictus, “Prediction models for distortions and residual stresses in thermoset polymer laminates: An overview,” Dec. 01, 2019, MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/jmmp3040087
Bankole I. Oladapo, “3D printing and morphological characterisation of polymeric composite scaffolds,” Eng Struct, vol. 216, May 2020. https://doi.org/10.1016/j.engstruct.2020.110752
M. Shoeb, L. Kumar, and A. Haleem, “Biocomposites based 3D printing, processes and applications: a brief review,” International Journal of Sustainable Materials and Structural Systems, vol. 5, p. 326, Jan. 2021. https://doi.org/10.1504/IJSMSS.2021.121269
B. Petrova and V. Jivkov, “Application of 3D Printing Technology in Furniture Construction,” Materials, vol. 17, no. 19, Oct. 2024. https://doi.org/10.3390/ma17194848
L. Senlin, S. Mokhtar, and N. M. P. Toyong, “Integrating 3D Printing Technology into Wooden Furniture Upcycling,” 2024, pp. 28-39. https://doi.org/10.2991/978-2-38476-293-4_4
B. Buschmann, K. Henke, D. Talke, B. Saile, C. Asshoff, and F. Bunzel, “Additive manufacturing of wood composite panels for individual layer fabrication (Ilf),” Polymers (Basel), vol. 13, no. 19, Oct. 2021. https://doi.org/10.3390/polym13193423
R. Shakoor, M. Y. Hassan, A. Raheem, and Y. K. Wu, “Wake effect modeling: A review of wind farm layout optimization using Jensen’s model,” May 01, 2016, Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.229
S. G. Nukala, I. Kong, A. B. Kakarla, V. I. Patel, and H. Abuel-Naga, “Simulation of Wood Polymer Composites with Finite Element Analysis,” Polymers (Basel), vol. 15, no. 9, May 2023. https://doi.org/10.3390/polym15091977
I. Ezzaraa et al., “Numerical Modeling Based on Finite Element Analysis of 3D-Printed Wood-Polylactic Acid Composites: A Comparison with Experimental Data,” Forests, vol. 14, no. 1, Jan. 2023. https://doi.org/10.3390/f14010095
M. Laurenti, I. Bavasso, E. Palazzi, J. Tirillò, F. Sarasini, and F. Berto, “Predicting the mechanical behavior in FDM printing of biopolymers through boosting artificial neural networks,” Mater Des, vol. 257, Sep. 202. https://doi.org/10.1016/j.matdes.2025.114475
S. M. Sekar et al., “Isolation of Microcrystalline Cellulose from Wood and Fabrication of Polylactic Acid (PLA) Based Green Biocomposites,” J Renew Mater, vol. 12, no. 8, pp. 1455-1474, 2024. https://doi.org/10.32604/jrm.2024.052952
M. Rafiee, R. D. Farahani, and D. Therriault, “Multi-Material 3D and 4D Printing: A Survey,” Jun. 01, 2020, John Wiley and Sons Inc. https://doi.org/10.1002/advs.201902307
D. Correa et al., “3D-Printed Wood: Programming Hygroscopic Material Transformations,” 3D Print Addit Manuf, vol. 2, no. 3, pp. 106-116, Sep. 2015. https://doi.org/10.1089/3dp.2015.0022
Y. Huang, S. Löschke, Y. Gan, and G. Proust, “Interrelations between Printing Patterns and Residual Stress in Fused Deposition Modelling for the 4D Printing of Acrylonitrile Butadiene Styrene and Wood-Plastic Composites,” Journal of Manufacturing and Materials Processing, vol. 8, no. 2, Apr. 2024. https://doi.org/10.3390/jmmp8020077