Determining the Significance of Surface Roughness and Hardness Outputs of Grinding Cylinders Specifically for Laser Processing Parameters
DOI:
https://doi.org/10.12974/2311-8717.2025.13.06Keywords:
Laser processing parameters, Surface roughness, Hardness, Grinding, Industrial applicationsAbstract
Surface roughness and hardness, critically important in industrial applications, are parameters that affect the performance and functionality of cast iron materials, particularly in various sectors. White cast iron is widely used in food milling due to its superior hardness and wear resistance. In parallel with all these advantages, grinding cylinders made of white cast iron wear to a certain extent due to the grinding of products such as wheat, barley, and coffee beans, necessitating periodic surface treatment. Laser processing has become widely used in recent years to modify the surface properties of metallic and composite materials. This experimentally significant study focused on investigating the effects of laser processing parameters on the surface roughness and hardness of grinding cylinders made of white cast iron. It was concluded that by using 10, 30 and 50 W, the desired hardness and roughness can be achieved by correctly selecting the process parameters. At the end of the experimental process, depending on the effect of power parameter variability, microscopic images showed a smooth surface texture, regional molten surface fluctuations and microcrater results in the presence of irregular solidification in the upper layer.
References
Abdulhadi H, Ahmad S, Ismail I, Ishak M and Mohammed G 2017 Experimental Investigation of Thermal Fatigue Die Casting Dies by Using Response Surface Modelling Metals 7 191. https://doi.org/10.3390/met7060191
Ahmed, K., et al. (2021). Influence of Laser Processing Parameters on Surface Roughness and Microhardness of AISI 304 Stainless Steel. Materials Today: Proceedings, 46, 6462-6468.
Ahmad, S., et al. (2020). Influence of Laser Power on the Microstructure, Hardness and Wear Properties of Cast Iron Coating Produced by Laser Cladding. Journal of Materials Engineering and Performance, 29(2), 1101-1109.
Batista, C., Portinha, A., Ribeiro, R. M. Teixeira, V., Costa, M. F., Oliveira, C. R., Surface Laser-Glazing of Plasma-Sprayed Thermal Barrier CoatingsAppl. Surf. Sci. 247, 313-319 (2005). https://doi.org/10.1016/j.apsusc.2005.01.047
Brabazon, D. Naher, S., Biggs, P., Laser surface modification of tool steel for semi-solid steel forming, Solid State Phenom. 141-143, 255-260 (2008). https://doi.org/10.4028/www.scientific.net/SSP.141-143.255
Chen, Y., et al. (2019). Influence of surface roughness on the fatigue properties of high strength cast iron. Engineering Failure Analysis, 104, 643-651.
Cabalin, L. M., Romero, D., Baena, J. M., Laserna, J. J., Effect of surface topography in the characterization of stainless-steel using laser‐induced breakdown spectrometry, Surf. Interface Anal. 27, 805-810 (1999). https://doi.org/10.1002/(SICI)1096-9918(199909)27:9<805::AID-SIA576>3.0.CO;2-K
Deng, Y., et al. (2021). Effects of Laser Power on Microstructure and Properties of Cast Iron Surface Coatings Prepared by Laser Cladding. Journal of Materials Engineering and Performance, 30(10), 6303-6311.
Du D, He YF, Sui B, Xiong LJ, Zhang H. Laser texturing of rollers by pulsed Nd:YAG laser. J Mater Process Technol 2005; 161:456-61. https://doi.org/10.1016/j.jmatprotec.2004.07.083
Dezfoli, A.R.A, Hwang W-S, Huang W-C, Tsai T-W. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach. Scientific reports 2017; 7:1-11. https://doi.org/10.1038/srep41527
Fathi, H., et al. (2017). Microstructure and wear resistance of laser clad Cr7C3/Cr3C2-NiCr/Cr-N composite coating on cast iron. Surface and Coatings Technology, 325, 213-224.
Gupta, M., et al. (2021). Laser Surface Treatment of Cast Irons: A Review. Materials Today: Proceedings, 48, 3050-3056.
Gupta, M., et al. (2020). Influence of Laser Processing Parameters on Surface Roughness and Microhardness of AISI 316 Stainless Steel. Journal of Materials Engineering and Performance, 29(11), 6746-6757.
Ion, J.C. Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application; Butterworth-Heinemann: Oxford, MS, UK, 2005; ISBN 008097189X.
Issa, A., Brabazon, D., Hashmi, M.S.J., 3D transient thermal modelling of laser microchannel fabrication in lime-soda glass, J. Mater. Process. Technol. 207, 307-314 (2008). https://doi.org/10.1016/j.jmatprotec.2008.06.056
Jena, S., et al. (2020). Optimization of laser surface treatment parameters for enhanced mechanical properties of cast iron. Materials Today: Proceedings, 25, 1825-1829
Jiang, W., Molian, P., Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting diesSurf. Coat. Technol. 135, 139-149 (2001). https://doi.org/10.1016/S0257-8972(00)01075-6
Khan, Z. A., et al. (2021). Effect of Laser Power on Microstructure and Hardness of Fe-C-Cr-Ni-Mo Alloy Coating Deposited on Cast Iron. Journal of Materials Engineering and Performance, 30(8), 4663-4670.
Kennedy, E., Byrne, G., Collins, D.N. A review of the use of high-power diode lasers in surface hardening. J. Mater. Process. Technol. 2004, 156, 1855-1860. https://doi.org/10.1016/j.jmatprotec.2004.04.276
Kaldos A, Pieper HJ, Wolf E, Krause M. Laser machining in die making—a modern rapid tooling process. J Mater Process Technol 2004;155/156: 1815-20. https://doi.org/10.1016/j.jmatprotec.2004.04.258
Kuar AS, Doloi B, Bhattacharyya B. Modelling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of Zirconia (ZrO2). Int J Mach Tools Manuf 2006; 46: 1301-10. https://doi.org/10.1016/j.ijmachtools.2005.10.016
Kumar, V.C. Process parameters influencing melt profile and hardness of pulsed laser treated Ti-6Al-4V, Surf. Coat. Tech. 201, 3174-3180 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.035
Klobcar D, Tusek J and Taljat B 2008 Thermal fatigue of materials for die-casting tooling Materials Science and Engineering: A 472 198-207. https://doi.org/10.1016/j.msea.2007.03.025
Liu, W., et al. (2018). Wear Resistance and Microstructure of White Cast Iron with Different Contents of Hard Phase. Materials Science Forum, 940, 102-107. https://doi.org/10.4028/www.scientific.net/MSF.913.102
Liu, W., et al. (2019). Surface roughness and micro-hardness of as-cast high-chromium white iron subjected to laser surface melting. Materials Science and Technology, 35(1), 119-125.
Li, T., Lou, Q. Dong, J. Wei, Y., Liu, J. Modified surface morphology in surface ablation of cobalt-cemented tungsten carbide with pulsed UV laser radiationAppl. Surf. Sci. 172, 331-344 (2001). https://doi.org/10.1016/S0169-4332(00)00881-3
Mirhosseini N, Crouse PL, Schmidth MJJ, Li L, Garrod D. Laser surface microtexturing of Ti-6Al-4V substrates for improved cell integration. Appl Surf Sci 2007; 253: 7738-43. https://doi.org/10.1016/j.apsusc.2007.02.168
Norhafzan, B, Aqida, S N, Chikarakara E and Brabazon D 2016 Surface modification of AISI H13 tool steel by laser cladding with NiTi powder Applied Physics A 122 384. https://doi.org/10.1007/s00339-016-9937-6
Pinkerton, A.J. Li, L., An investigation of the effect of pulse frequency in laser multiple-layer cladding of stainless steel, Appl. Surf. Sci. 208-209, 405-410 (2003). https://doi.org/10.1016/S0169-4332(02)01420-4
Qi, J, Wang KL, Zhu YM. A study on the laser marking process of stainless steel. J Mater Process Technol 2003; 139: 273-6. https://doi.org/10.1016/S0924-0136(03)00234-6
Rai, R., et al. (2021). Optimization of Laser Processing Parameters for Enhanced Surface Properties of Cast Iron. Materials Today: Proceedings, 42, 308-313.
Rocha, O., et al. (2020). Tribological properties of as-cast and heat-treated high-chromium white cast irons. Wear, 450-451, 203247. https://doi.org/10.1016/S0921-5093(00)01253-3
Roy, A. ve Manna, I. (2001). Laser surface engineering to improve wear resistance of austempered ductile iron. Materials Science and Engineering: A, 297(1-2): 85-93.
Tani G., Fortunato, A., Ascari, A. ve Campana, G. (2010). Laser surface hardening of martensitic stainless steel hollow parts. CIRP Annals, 59: 207-210. https://doi.org/10.1016/j.cirp.2010.03.077
Tesker, E.I., Tesker, S.E. (2014). Surface laser treatment of gears. Russian Engineering Research, 34: 285-289. https://doi.org/10.3103/S1068798X14050153
Voevodin AA, Zabinski JS. Laser surface texturing for adaptive solid lubrication. Wear 2006; 261: 1285-92. https://doi.org/10.1016/j.wear.2006.03.013
Wang, B., Pan, Y., Liu, Y., Lyu, N., Barber, G.C., Wang, R., Cui, W., Qiu, F. ve Hu, M. (2020). Effects of quench-tempering and laser hardening treatment on wear resistance of gray. https://doi.org/10.1016/j.jmrt.2020.05.006
Yadav, S., et al. (2019). Influence of Laser Processing Parameters on Surface Roughness and Microhardness of AISI 1040 Steel. Materials Today: Proceedings, 19, 784-789.
Yi W, Dang-Sheng X. The effect of laser surface texturing on frictional performance of face seal. J Mater Process Technol 2008; 197: 96-100. https://doi.org/10.1016/j.jmatprotec.2007.06.019
Zhang, Y., et al. (2020). Optimization of Laser Processing Parameters for Enhanced Surface Properties of White Cast Iron. Materials Today: Proceedings cast iron. Journal of Materials Research and Technology, 9(4): 8163-8171. https://doi.org/10.1016/j.jmrt.2020.05.006